[PYTHON] [Übersetzung] scikit-learn 0.18 Benutzerhandbuch 1.15. Isotonische Regression

google übersetzte http://scikit-learn.org/0.18/modules/isotonic.html

[scikit-learn 0.18 Benutzerhandbuch 1. Überwachtes Lernen](http://qiita.com/nazoking@github/items/267f2371757516f8c168#1-%E6%95%99%E5%B8%AB%E4%BB%98 Von% E3% 81% 8D% E5% AD% A6% E7% BF% 92)


1.15 Isotonische Regression

Die IsotonicRegression () -Klasse passt nicht abnehmende Funktionen in die Daten an. Es löst die folgenden Probleme:

minimize \sum_i w_i (y_i - \hat{y}_i)^2
subject\ to\ \hat{y}_{min} = \hat{y}_1 \le \hat{y}_2 ... \le \hat{y}_n = \hat{y}_{max}

Jedes $ w_i $ ist streng positiv und jedes $ y_i $ ist eine beliebige reelle Zahl. Dies erzeugt einen Vektor von nicht abnehmenden Elementen, die in Bezug auf den mittleren quadratischen Fehler am wenigsten ungefähr sind. In der Praxis bildet diese Liste von Elementen eine Funktion, die segmental linear ist.


[scikit-learn 0.18 Benutzerhandbuch 1. Überwachtes Lernen](http://qiita.com/nazoking@github/items/267f2371757516f8c168#1-%E6%95%99%E5%B8%AB%E4%BB%98 Von% E3% 81% 8D% E5% AD% A6% E7% BF% 92)

© 2010 - 2016, Entwickler von Scikit-Learn (BSD-Lizenz).

Recommended Posts

[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 1.15. Isotonische Regression
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 4.5. Zufällige Projektion
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 1.11. Ensemble-Methode
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 4.2 Merkmalsextraktion
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 1.16. Wahrscheinlichkeitskalibrierung
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 1.13 Funktionsauswahl
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 3.4. Modellpersistenz
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 2.8. Dichteschätzung
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 4.3. Datenvorverarbeitung
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 4.4. Unüberwachte Dimensionsreduzierung
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch Inhaltsverzeichnis
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 1.4. Support Vector Machine
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 1.12. Mehrklassenalgorithmus und Mehrfachetikettenalgorithmus
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 3.2. Optimieren der Hyperparameter des Schätzers
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 4.8. Konvertieren Sie das Vorhersageziel (y)
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 2.7. Erkennung von Neuheiten und Ausreißern
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 3.1. Kreuzvalidierung: Bewerten Sie die Leistung des Schätzers
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 3.3. Modellbewertung: Quantifizieren Sie die Qualität der Vorhersage
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 4.1. Pipeline- und Feature-Union: Kombination von Schätzern
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 3.5. Verifizierungskurve: Zeichnen Sie die Punktzahl, um das Modell zu bewerten
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 2.5. Zerlegen von Signalen in Komponenten (Matrixzerlegungsproblem)
Pandas Benutzerhandbuch "Multi-Index / Advanced Index" (offizielles Dokument Japanische Übersetzung)
Pandas Benutzerhandbuch "Manipulieren fehlender Daten" (offizielles Dokument Japanische Übersetzung)
[Python] Lineare Regression mit Scicit-Learn
Klassifikation / Regression durch Stapeln (Scikit-Learn)
Robuste lineare Regression mit Scikit-Learn
Pandas Benutzerhandbuch "Tabellenformatierung und Pivot-Tabelle" (offizielles Dokument Japanische Übersetzung)