[PYTHON] [Übersetzung] scikit-learn 0.18 Benutzerhandbuch 4.8. Konvertieren Sie das Vorhersageziel (y)

Google übersetzte http://scikit-learn.org/0.18/modules/preprocessing_targets.html. [scikit-learn 0.18 Benutzerhandbuch 4. Datensatzkonvertierung](http://qiita.com/nazoking@github/items/267f2371757516f8c168#4-%E3%83%87%E3%83%BC%E3%82%BF Von% E3% 82% BB% E3% 83% 83% E3% 83% 88% E5% A4% 89% E6% 8F% 9B)


4.8 Konvertieren Sie das Vorhersageziel (y)

4.8.1. Label-Binärisierung

LabelBinarizer wird verwendet, um eine Label-Indikatormatrix aus einer Liste von Labels mit mehreren Klassen zu erstellen. Eine nützliche Utility-Klasse:

>>> from sklearn import preprocessing
>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit([1, 2, 6, 4, 2])
LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False)
>>> lb.classes_
array([1, 2, 4, 6])
>>> lb.transform([1, 6])
array([[1, 0, 0, 0],
       [0, 0, 0, 1]])

Wenn Sie mehrere Labels pro Instanz verwenden möchten, verwenden Sie MultiLabelBinarizer (http://scikit-learn.org/0.18/modules/generated/sklearn.preprocessing.MultiLabelBinarizer.html#sklearn.preprocessing.MultiLabelBinarizer). ..

>>> lb = preprocessing.MultiLabelBinarizer()
>>> lb.fit_transform([(1, 2), (3,)])
array([[1, 1, 0],
       [0, 0, 1]])
>>> lb.classes_
array([1, 2, 3])

4.8.2. Etikettencodierung

LabelEncoder sollte jetzt nur Werte zwischen 0 und n_classes-1 enthalten Utility-Klasse zum Normalisieren von Beschriftungen. Dies ist manchmal nützlich, um effiziente Cython-Routinen zu schreiben. LabelEncoder kann wie folgt verwendet werden:

>>> from sklearn import preprocessing
>>> le = preprocessing.LabelEncoder()
>>> le.fit([1, 2, 2, 6])
LabelEncoder()
>>> le.classes_
array([1, 2, 6])
>>> le.transform([1, 1, 2, 6])
array([0, 0, 1, 2])
>>> le.inverse_transform([0, 0, 1, 2])
array([1, 1, 2, 6])

Es kann auch verwendet werden, um nicht numerische Beschriftungen in numerische Beschriftungen umzuwandeln (sofern hashbar und vergleichbar).

>>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
['amsterdam', 'paris', 'tokyo']
>>> le.transform(["tokyo", "tokyo", "paris"])
array([2, 2, 1])
>>> list(le.inverse_transform([2, 2, 1]))
['tokyo', 'tokyo', 'paris']

[scikit-learn 0.18 Benutzerhandbuch 4. Datensatzkonvertierung](http://qiita.com/nazoking@github/items/267f2371757516f8c168#4-%E3%83%87%E3%83%BC%E3%82%BF Von% E3% 82% BB% E3% 83% 83% E3% 83% 88% E5% A4% 89% E6% 8F% 9B)

© 2010 - 2016, Entwickler von Scikit-Learn (BSD-Lizenz).

Recommended Posts

[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 4.8. Konvertieren Sie das Vorhersageziel (y)
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 3.3. Modellbewertung: Quantifizieren Sie die Qualität der Vorhersage
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 3.2. Optimieren der Hyperparameter des Schätzers
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 4.5. Zufällige Projektion
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 1.11. Ensemble-Methode
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 4.2 Merkmalsextraktion
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 1.16. Wahrscheinlichkeitskalibrierung
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 1.13 Funktionsauswahl
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 3.4. Modellpersistenz
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 2.8. Dichteschätzung
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 4.3. Datenvorverarbeitung
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 3.1. Kreuzvalidierung: Bewerten Sie die Leistung des Schätzers
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 4.4. Unüberwachte Dimensionsreduzierung
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch Inhaltsverzeichnis
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 1.4. Support Vector Machine
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 3.5. Verifizierungskurve: Zeichnen Sie die Punktzahl, um das Modell zu bewerten
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 2.5. Zerlegen von Signalen in Komponenten (Matrixzerlegungsproblem)
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 2.7. Erkennung von Neuheiten und Ausreißern
[Übersetzung] scikit-learn 0.18 Benutzerhandbuch 4.1. Pipeline- und Feature-Union: Kombination von Schätzern
[Übersetzung] scicit-learn 0.18 Tutorial Auswahl des richtigen Modells