Inhaltsverzeichnis Kapitel 1: Lineares Regressionsmodell [Kapitel 2: Nichtlineares Regressionsmodell] (https://qiita.com/matsukura04583/items/baa3f2269537036abc57) [Kapitel 3: Logistisches Regressionsmodell] (https://qiita.com/matsukura04583/items/0fb73183e4a7a6f06aa5) [Kapitel 4: Hauptkomponentenanalyse] (https://qiita.com/matsukura04583/items/b3b5d2d22189afc9c81c) [Kapitel 5: Algorithmus 1 (k-Nachbarschaftsmethode (kNN))] (https://qiita.com/matsukura04583/items/543719b44159322221ed) [Kapitel 6: Algorithmus 2 (k-Mittel)] (https://qiita.com/matsukura04583/items/050c98c7bb1c9e91be71) [Kapitel 7: Support Vector Machine] (https://qiita.com/matsukura04583/items/6b718642bcbf97ae2ca8)
from google.colab import drive
drive.mount('/content/drive')
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegressionCV
from sklearn.metrics import confusion_matrix
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
%matplotlib inline
Im Folgenden erstellen wir einen Ordner "study_ai_ml" direkt unter "Mein Laufwerk" in Google Drive.
cancer_df = pd.read_csv('/content/drive/My Drive/study_ai_ml/data/cancer.csv')
print('cancer df shape: {}'.format(cancer_df.shape))
Ergebnis
cancer df shape: (569, 33)
cancer_df
cancer_df.drop('Unnamed: 32', axis=1, inplace=True)
cancer_df
** ・ Diagnose: Diagnoseergebnis (B gutartig / M bösartig) ・ Erklärende Variablen werden durch logistische Regression mit der Zielvariablen in der zweiten Spalte nach der dritten Spalte klassifiziert **
#Extraktion der Zielvariablen
y = cancer_df.diagnosis.apply(lambda d: 1 if d == 'M' else 0)
#Extraktion erklärender Variablen
X = cancer_df.loc[:, 'radius_mean':]
#Separate Daten für Training und Test
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
#Standardisierung
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
#Lernen mit logistischer Regression
logistic = LogisticRegressionCV(cv=10, random_state=0)
logistic.fit(X_train_scaled, y_train)
#Überprüfung
print('Train score: {:.3f}'.format(logistic.score(X_train_scaled, y_train)))
print('Test score: {:.3f}'.format(logistic.score(X_test_scaled, y_test)))
print('Confustion matrix:\n{}'.format(confusion_matrix(y_true=y_test, y_pred=logistic.predict(X_test_scaled))))
Ergebnis
Train score: 0.988
Test score: 0.972
Confustion matrix:
[[89 1]
[ 3 50]]
** ・ Bestätigt, dass es mit einem Verifizierungswert von 97% klassifiziert werden kann **
pca = PCA(n_components=30)
pca.fit(X_train_scaled)
plt.bar([n for n in range(1, len(pca.explained_variance_ratio_)+1)], pca.explained_variance_ratio_)
# PCA
#Auf 2 Dimensionen komprimiert
pca = PCA(n_components=2)
X_train_pca = pca.fit_transform(X_train_scaled)
print('X_train_pca shape: {}'.format(X_train_pca.shape))
# X_train_pca shape: (426, 2)
#Beitragssatz
print('explained variance ratio: {}'.format(pca.explained_variance_ratio_))
# explained variance ratio: [ 0.43315126 0.19586506]
#Plot auf Streudiagramm
temp = pd.DataFrame(X_train_pca)
temp['Outcome'] = y_train.values
b = temp[temp['Outcome'] == 0]
m = temp[temp['Outcome'] == 1]
plt.scatter(x=b[0], y=b[1], marker='o') #Benness ist mit ○ markiert
plt.scatter(x=m[0], y=m[1], marker='^') #Bösartig ist mit △ markiert
plt.xlabel('PC 1') #X-Achse der ersten Hauptkomponente
plt.ylabel('PC 2') #Y-Achse für die zweite Hauptkomponente
#Standardisierung
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
#Lernen mit logistischer Regression
logistic = LogisticRegressionCV(cv=10, random_state=0)
logistic.fit(X_train_scaled, y_train)
#Überprüfung
print('Train score: {:.3f}'.format(logistic.score(X_train_scaled, y_train)))
print('Test score: {:.3f}'.format(logistic.score(X_test_scaled, y_test)))
print('Confustion matrix:\n{}'.format(confusion_matrix(y_true=y_test, y_pred=logistic.predict(X_test_scaled))))
Ergebnis
Train score: 0.927
Test score: 0.944
Confustion matrix:
[[87 3]
[ 5 48]]
** ・ Bestätigt, dass es mit einem Verifizierungswert von 94% klassifiziert werden kann ** Selbst wenn die Anzahl der Dimensionen auf 2 reduziert wurde, sank die Verifizierungsbewertung nicht wesentlich von 97% auf 94%, und das Ergebnis war, dass die Anzahl der Dimensionen unter Beibehaltung der Genauigkeit reduziert wurde.
Verwandte Seiten
Kapitel 1: Lineares Regressionsmodell [Kapitel 2: Nichtlineares Regressionsmodell] (https://qiita.com/matsukura04583/items/baa3f2269537036abc57) [Kapitel 3: Logistisches Regressionsmodell] (https://qiita.com/matsukura04583/items/0fb73183e4a7a6f06aa5) [Kapitel 4: Hauptkomponentenanalyse] (https://qiita.com/matsukura04583/items/b3b5d2d22189afc9c81c) [Kapitel 5: Algorithmus 1 (k-Nachbarschaftsmethode (kNN))] (https://qiita.com/matsukura04583/items/543719b44159322221ed) [Kapitel 6: Algorithmus 2 (k-Mittel)] (https://qiita.com/matsukura04583/items/050c98c7bb1c9e91be71) [Kapitel 7: Support Vector Machine] (https://qiita.com/matsukura04583/items/6b718642bcbf97ae2ca8)
Recommended Posts