[Wissenschaftlich-technische Berechnung nach Python] Lösen der eindimensionalen Newton-Gleichung nach der Runge-Kutta-Methode 4. Ordnung

Einführung

** Die [Lunge-Kutta-Methode] vierter Ordnung (https://ja.wikipedia.org/wiki/%E3%83%AB%E3%83%B3%E3%82), die eine der Lösungen für gewöhnliche Differentialgleichungen darstellt. Ein Beispiel für die numerische Lösung der Newtonschen Gleichung durch% B2% EF% BC% 9D% E3% 82% AF% E3% 83% 83% E3% 82% BF% E6% B3% 95) wird gegeben. ** ** **


Inhalt

(1) [Aufwärmen] Lösen der gewöhnlichen Differentialgleichung erster Ordnung nach der Runge-Kutta-Methode 4. Ordnung. (2) Oberschwingungsoszillator (3) Gedämpfte Vibration (4) Erzwungene Vibration


Inhalt (1): Lösen der gewöhnlichen Differentialgleichung erster Ordnung

import numpy as np
import matplotlib.pyplot as plt
"""
4. Runge-Gewöhnliche Differentialgleichung erster Ordnung nach der Kutta-Methode
The fourth-order Runge-Kutta method for the 1st order ordinary differencial equation

dx/dt = -x^3+sin(t)Lösen
"""

def f(x,t):
    return -x**3 +np.sin(t)

a = 0.0
b = 10.0
N = 100
h = (b-a)/N

tpoints = np.arange(a,b,h)
xpoints = []
x = 0.0

for t in tpoints:
    xpoints.append(x)
    k1 = h*f(x,t)
    k2 = h*f(x+0.5*k1, t+0.5*h)
    k3 = h*f (x+0.5*k2, t+0.5*h)
    k4 = h*f(x+k3, t+h)
    x += (k1+2*k2+2*k3+k4)/6
    
plt.plot (tpoints, xpoints)
plt.xlabel("t")
plt.ylabel("x(t)")
plt.show()


t.png


Inhalt (2): Harmonischer Oszillator

import numpy as np
import matplotlib.pyplot as plt
"""
4. Runge-Lösen der eindimensionalen Newtonschen Gleichung nach der Kutta-Methode
The fourth-order Runge-Kutta method for the 1D Newton's equation
#Beispiel:Lineare Belastbarkeit(harmonic oscilation)
"""

def f(x, v, t):
    return -k*x  #Strom wiederherstellen

M = 1.0 # mass: 1 Kg
k = 1.0 #Federkonstante
t0 = 0.0
t1 = 10.0

N = 50



del_t = (t1-t0)/N # time grid

tpoints = np.arange(t0, t1, del_t)
xpoints = []
vpoints = []

# initial condition
x0 = 0.0
v0 = 1.0

x, v = x0, v0


for t in tpoints:
    xpoints.append(x)
    vpoints.append(v)
    k1v =f(x, v, t)*del_t /M
    k1x = v * del_t
        
    k2v =  f(x+k1x/2, v+k1v/2, t+del_t/2 )*del_t /M
    k2x =(v+k1v/2)*del_t 
    
    k3v =f (x+k2x/2, v+k2v/2, t+del_t/2 )*del_t /M
    k3x =(v+k2v/2 ) *del_t 
    
    k4v = f(x+k3x, v+k3v, t+del_t )*del_t /M
    k4x = (v+k3v )*del_t 
    
 
    
    v += (k1v + 2 * k2v + 2* k3v + k4v)/6
    x += (k1x + 2 * k2x + 2* k3x + k4x)/6
    
plt.plot (tpoints, xpoints, 'o',label='4th order Runge-Kutta')
plt.xlabel("t",  fontsize=24)
plt.ylabel("x(t)",  fontsize=24)

tt=np.arange(t0, t1, 0.01*del_t)
plt.plot (tt, np.sin(tt), '-',label='Exact: Sin (t)',color = 'Green')
plt.legend(loc='upper left')

plt.show()


plt.plot (tpoints,vpoints, 'o',label='4th order Runge-Kutta')
plt.xlabel("t", fontsize=24)
plt.ylabel("v(t)", fontsize=24)

tt=np.arange(t0, t1, 0.01*del_t)
plt.plot (tt, np.cos(tt), '-',label='Exact: Cos (t)', color = 'red')
plt.legend(loc='upper left')

plt.show()

t1.png

t2.png


Inhalt (3) Dämpfungsvibration

import numpy as np
import matplotlib.pyplot as plt
"""
Gedämpfte Vibration
Damped oscillation

"""

def f(x, v, t):
    k=1.0 
    a=1.0
    return -k*x-a*v

M = 1.0 # mass: 1 Kg
t0 = 0.0
t1 = 10.0

N = 50



del_t = (t1-t0)/N # time grid

tpoints = np.arange(t0, t1, del_t)
xpoints = []
vpoints = []

# initial condition
x0 = 0.0
v0 = 1.0

x, v = x0, v0


for t in tpoints:
    xpoints.append(x)
    vpoints.append(v)
    k1v =f(x, v, t)*del_t /M
    k1x = v * del_t
        
    k2v =  f(x+k1/2, v+k1v/2, t+del_t/2 )*del_t /M
    k2x =(v+k1v/2)*del_t 
    
    k3v =f (x+k2x/2, v+k2v/2, t+del_t/2 )*del_t /M
    k3x =(v+k2v/2 ) *del_t 
    
    k4v = f(x+k3, v+k3v, t+del_t )*del_t /M
    k4x = (v+k3v )*del_t 
    
 
    
    v += (k1v + 2 * k2v + 2* k3v + k4v)/6
    x += (k1x + 2 * k2x + 2* k3x + k4x)/6
    
plt.plot (tpoints, xpoints, 'o',label='4th order Runge-Kutta')
plt.xlabel("t",  fontsize=24)
plt.ylabel("x(t)",  fontsize=24)

#tt=np.arange(t0, t1, 0.01*del_t)
#plt.plot (tt, np.sin(tt), '-',label='Exact: Sin (t)',color = 'Green')
plt.legend(loc='upper right')

plt.show()


plt.plot (tpoints,vpoints, 'o',label='4th order Runge-Kutta')
plt.xlabel("t", fontsize=24)
plt.ylabel("v(t)", fontsize=24)

#tt=np.arange(t0, t1, 0.01*del_t)
#plt.plot (tt, np.cos(tt), '-',label='Exact: Cos (t)', color = 'red')
plt.legend(loc='upper right')

plt.show()

t1.png t2.png


Inhalt (4) Erzwungene Vibration

import numpy as np
import matplotlib.pyplot as plt
"""
Erzwungene Vibration
Forced vibration

"""

def f(x, v, t):
    k=1.0 
    gamma=0.1
    return -k*x-2* gamma *v + 2*sin(t)

M = 1.0 # mass: 1 Kg
t0 = 0.0
t1 = 50.0

N = 1000



del_t = (t1-t0)/N # time grid

tpoints = np.arange(t0, t1, del_t)
xpoints = []
vpoints = []

# initial condition
x0 = 0.0
v0 = 1.0

x, v = x0, v0


for t in tpoints:
    xpoints.append(x)
    vpoints.append(v)
    k1v =f(x, v, t)*del_t /M
    k1x = v * del_t
        
    k2v =  f(x+k1/2, v+k1v/2, t+del_t/2 )*del_t /M
    k2x =(v+k1v/2)*del_t 
    
    k3v =f (x+k2x/2, v+k2v/2, t+del_t/2 )*del_t /M
    k3x =(v+k2v/2 ) *del_t 
    
    k4v = f(x+k3, v+k3v, t+del_t )*del_t /M
    k4x = (v+k3v )*del_t 
    
 
    
    v += (k1v + 2 * k2v + 2* k3v + k4v)/6
    x += (k1x + 2 * k2x + 2* k3x + k4x)/6
    
plt.plot (tpoints, xpoints, 'o',label='4th order Runge-Kutta')
plt.xlabel("t",  fontsize=24)
plt.ylabel("x(t)",  fontsize=24)

#tt=np.arange(t0, t1, 0.01*del_t)
#plt.plot (tt, np.sin(tt), '-',label='Exact: Sin (t)',color = 'Green')
plt.legend(loc='upper right')

plt.show()


plt.plot (tpoints,vpoints, 'o',label='4th order Runge-Kutta')
plt.xlabel("t", fontsize=24)
plt.ylabel("v(t)", fontsize=24)

#tt=np.arange(t0, t1, 0.01*del_t)
#plt.plot (tt, np.cos(tt), '-',label='Exact: Cos (t)', color = 'red')
plt.legend(loc='upper right')

plt.show()

t1.png t2.png


Nachtrag

Bei der hier durchgeführten Lunge-Kutta-Methode wird die Gesamtenergie, die eine der konservierten Mengen des Systems ist, mit zunehmendem Zeitschritt nicht numerisch konserviert. Eine der Lösungen, um dies zu verbessern (symmetrisch zu machen), ist die Berley-Methode (siehe Qiita-Artikel).

Recommended Posts

[Wissenschaftlich-technische Berechnung nach Python] Lösen der eindimensionalen Newton-Gleichung nach der Runge-Kutta-Methode 4. Ordnung
[Wissenschaftlich-technische Berechnung von Python] Lösen der eindimensionalen Schrödinger-Gleichung im stationären Zustand durch Schießmethode (1), Potential vom Well-Typ, Quantenmechanik
[Wissenschaftlich-technische Berechnung von Python] Lösen der eindimensionalen Schrödinger-Gleichung im stationären Zustand durch Aufnahmemethode (2), harmonisches Oszillatorpotential, Quantenmechanik
Lösen einer eindimensionalen Wellengleichung mit der Differenzmethode (Python)
[Wissenschaftlich-technische Berechnung mit Python] Lösen der gewöhnlichen Differentialgleichung zweiter Ordnung nach der Numerov-Methode, numerische Berechnung
[Wissenschaftlich-technische Berechnung mit Python] Lösen simultaner linearer Gleichungen, numerische Berechnung, Numpy
[Wissenschaftlich-technische Berechnung mit Python] Summenberechnung, numerische Berechnung
[Wissenschaftlich-technische Berechnung nach Python] Numerische Lösung des Problems des eindimensionalen harmonischen Oszillators nach der Speed-Berle-Methode
[Wissenschaftlich-technische Berechnung nach Python] Lösen der Schledinger-Gleichung im stationären Zustand im dreidimensionalen isotropen Oszillatorpotential nach der Matrixmethode, Randwertproblem, Quantenmechanik
[Wissenschaftlich-technische Berechnung von Python] Anpassung durch nichtlineare Funktion, Zustandsgleichung, scipy
[Wissenschaftlich-technische Berechnung mit Python] Lösen gewöhnlicher Differentialgleichungen, mathematischer Formeln, Sympy
[Wissenschaftlich-technische Berechnung mit Python] Inverse Matrixberechnung, numpy
[Wissenschaftlich-technische Berechnung mit Python] Histogramm, Visualisierung, Matplotlib
[Wissenschaftlich-technische Berechnung mit Python] Lösen (verallgemeinerter) Eigenwertprobleme mit numpy / scipy mithilfe von Bibliotheken
[Wissenschaftlich-technische Berechnung nach Python] Numerische Lösung der eindimensionalen instationären Wärmeleitungsgleichung nach der Crank-Nicholson-Methode (implizite Methode) und der FTCS-Methode (positive Lösungsmethode), parabolische partielle Differentialgleichung
[Wissenschaftlich-technische Berechnung mit Python] Logistisches Diagramm, Visualisierung, Matplotlib
[Wissenschaftlich-technische Berechnung mit Python] Polarkoordinatendiagramm, Visualisierung, Matplotlib
[Wissenschaftlich-technische Berechnung durch Python] Lösung des Randwertproblems gewöhnlicher Differentialgleichungen im Matrixformat, numerische Berechnung
[Wissenschaftlich-technische Berechnung nach Python] Numerische Lösung von 1-dimensionalen und 2-dimensionalen Wellengleichungen nach der FTCS-Methode (explizite Methode), doppelt gekrümmte partielle Differentialgleichungen
[Wissenschaftlich-technische Berechnung mit Python] Spline-Interpolation dritter Ordnung, scipy
[Wissenschaftlich-technische Berechnung von Python] Grundlegende Operation des Arrays, numpy
[Wissenschaftlich-technische Berechnung mit Python] Monte-Carlo-Integration, numerische Berechnung, Numpy
[Wissenschaftlich-technische Berechnung nach Python] Numerische Lösung des Eigenwertproblems der Matrix durch Potenzmultiplikation, numerische lineare Algebra
[Wissenschaftlich-technische Berechnung nach Python] Numerische Integration, Trapezgesetz / Simpson-Gesetz, numerische Berechnung, scipy
[Wissenschaftlich-technische Berechnung mit Python] Beispiel für die Visualisierung von Vektorfeld, elektrostatischem Magnetfeld, Matplotlib
[Wissenschaftlich-technische Berechnung mit Python] 2D-Random-Walk (Drunken-Walk-Problem), numerische Berechnung
[Wissenschaftlich-technische Berechnung nach Python] Monte-Carlo-Simulation nach der Metropolenmethode der Thermodynamik des 2D-Anstiegsspinsystems
[Wissenschaftlich-technische Berechnung nach Python] Numerische Lösung der zweidimensionalen Laplace-Poisson-Gleichung für die elektrostatische Position nach der Jacobi-Methode, elliptische partielle Differentialgleichung, Randwertproblem
[Wissenschaftlich-technische Berechnung mit Python] Berechnung des Matrixprodukts mit @ operator, python3.5 oder höher, numpy
[Wissenschaftlich-technische Berechnung von Python] Zeichnungsanimation der parabolischen Bewegung mit Locus, Matplotlib
[Wissenschaftlich-technische Berechnung mit Python] Zeichnen, visualisieren, matplotlib 2D-Daten mit Fehlerleiste
[Wissenschaftlich-technische Berechnung von Python] Zeichnung von 3D-gekrümmter Oberfläche, Oberfläche, Drahtrahmen, Visualisierung, Matplotlib
Lösen von Bewegungsgleichungen in Python (odeint)
[Wissenschaftlich-technische Berechnung mit Python] Plot, Visualisierung, Matplotlib von 2D-Daten, die aus einer Datei gelesen wurden
[Wissenschaftlich-technische Berechnung mit Python] Zeichnen, Visualisieren, Matplotlib von 2D-Konturlinien (Farbkonturen) usw.
[Python] Numerische Berechnung der zweidimensionalen Wärmediffusionsgleichung mit der ADI-Methode (implizite Methode mit alternativer Richtung)
[Wissenschaftlich-technische Berechnung mit Python] Numerische Lösung der gewöhnlichen Differentialgleichung zweiter Ordnung, Anfangswertproblem, numerische Berechnung
[Wissenschaftlich-technische Berechnung mit Python] Liste der Matrizen, die in Hinpan in der numerischen linearen Algebra vorkommen
[Wissenschaftlich-technische Berechnung durch Python] Liste der Verwendung von (speziellen) Funktionen, die in der Physik unter Verwendung von scipy verwendet werden
[Wissenschaftliche und technische Berechnung von Python] Zeichnung fraktaler Figuren [Shelpinsky-Dreieck, Bernsley-Farn, fraktaler Baum]
Python - Differentialgleichung Numerische Lösung Euler-Methode & Zentrale Differenzmethode & Rungekutta-Methode
[Python] LASSO-Regression mit Gleichungsbeschränkung unter Verwendung der Multiplikatormethode
Wissenschaftlich-technische Berechnung mit Python] Zeichnen und Visualisieren von 3D-Isoplanes und deren Querschnittsansichten mit Mayavi
[Wissenschaftlich-technische Berechnung nach Python] Vergleich der Konvergenzgeschwindigkeiten der SOR-Methode, der Gauß-Seidel-Methode und der Jacobi-Methode für die Laplace-Gleichung, die partielle Differentialgleichung und das Randwertproblem