[PYTHON] 100 Sprachverarbeitung Knock-89: Analogie mit additiver Konstitutivität

Dies ist die Aufzeichnung der 89. "Analogie nach additivem Wahlkreis" von Language Processing 100 Knock 2015. Da es sich um eine "additive Zusammensetzung" handelt, wird das Ergebnis durch Ausführen einer Vektoroperation erhalten. Es ist die berühmte Berechnung "König + Frau-Mann = Prinzessin". Es ist eine Berechnung wie "Chef-kompetent =?", Die ich in verschiedenen Dingen der Welt ausprobieren möchte.

Referenzlink

Verknüpfung Bemerkungen
089.Analogie durch additive Zusammensetzung.ipynb Antwortprogramm GitHub Link
100 Klicks Amateur-Sprachverarbeitung:89 Ich bin Ihnen immer mit 100 Sprachverarbeitungsklopfen zu Dank verpflichtet

Umgebung

Art Ausführung Inhalt
OS Ubuntu18.04.01 LTS Es läuft virtuell
pyenv 1.2.15 Ich benutze pyenv, weil ich manchmal mehrere Python-Umgebungen benutze
Python 3.6.9 python3 auf pyenv.6.Ich benutze 9
3.7 oder 3.Es gibt keinen tiefen Grund, keine 8er-Serie zu verwenden
Pakete werden mit venv verwaltet

In der obigen Umgebung verwende ich die folgenden zusätzlichen Python-Pakete. Einfach mit normalem Pip installieren.

Art Ausführung
numpy 1.17.4
pandas 0.25.3

Aufgabe

Kapitel 9: Vektorraummethode (I)

enwiki-20150112-400-r10-105752.txt.bz2 Ist der Text von 105.752 Artikeln zufällig 1/10 aus den Artikeln ausgewählt, die zum 12. Januar 2015 aus etwa 400 Wörtern oder mehr der englischen Wikipedia-Artikel bestehen und im bzip2-Format komprimiert sind. Gibt es. Mit diesem Text als Korpus möchte ich einen Vektor (verteilten Ausdruck) lernen, der die Bedeutung eines Wortes ausdrückt. In der ersten Hälfte von Kapitel 9 wird der Prozess des Lernens des Wortvektors implementiert, indem er in mehrere Prozesse unterteilt wird, indem die Hauptkomponentenanalyse auf die aus dem Korpus erstellte Matrix für das gleichzeitige Auftreten von Wortkontexten angewendet wird. In der zweiten Hälfte von Kapitel 9 wird der durch Lernen erhaltene Wortvektor (300 Dimensionen) verwendet, um die Ähnlichkeit von Wörtern zu berechnen und zu analysieren (analog).

Beachten Sie, dass bei gehorsamer Implementierung von Problem 83 eine große Menge (ca. 7 GB) Hauptspeicher erforderlich ist. Wenn Ihnen der Speicher ausgeht, erstellen Sie einen Prozess oder ein 1/100 Stichproben-Korpus enwiki-20150112-400-r100-10576.txt.bz2. Verwenden Sie /nlp100/data/enwiki-20150112-400-r100-10576.txt.bz2).

Diesmal * 1/100 Stichprobenkorpus enwiki-20150112-400-r100-10576.txt.bz2 400-r100-10576.txt.bz2) ”* wird verwendet.

89. Analogie durch additive Zusammensetzung

Lesen Sie den Bedeutungsvektor des in 85 erhaltenen Wortes, berechnen Sie vec ("Spanien") --vec ("Madrid") + vec ("Athen") und finden Sie 10 Wörter mit hoher Ähnlichkeit zu diesem Vektor und deren Ähnlichkeit. Gib es aus.

Antworten

Antwortprogramm [089. Additive Constitutive Analogy.ipynb](https://github.com/YoheiFukuhara/nlp100/blob/master/09.%E3%83%99%E3%82%AF%E3%83%88 % E3% 83% AB% E7% A9% BA% E9% 96% 93% E6% B3% 95% 20 (I) / 089.% E5% 8A% A0% E6% B3% 95% E6% A7% 8B % E6% 88% 90% E6% 80% A7% E3% 81% AB% E3% 82% 88% E3% 82% 8B% E3% 82% A2% E3% 83% 8A% E3% 83% AD% E3 % 82% B8% E3% 83% BC.ipynb)

import numpy as np
import pandas as pd

#Ich habe beim Speichern keine Argumente angegeben'arr_0'Gespeichert in
matrix_x300 = np.load('085.matrix_x300.npz')['arr_0']

print('matrix_x300 Shape:', matrix_x300.shape)

group_t = pd.read_pickle('./083_group_t.zip')


# 'vec("Spain") - vec("Madrid") + vec("Athens")Vektorberechnung
vec = matrix_x300[group_t.index.get_loc('Spain')] \
      - matrix_x300[group_t.index.get_loc('Madrid')] \
      + matrix_x300[group_t.index.get_loc('Athens')]
vec_norm = np.linalg.norm(vec)

#Berechnung der Kosinusähnlichkeit
def get_cos_similarity(v2):
    
    #Wenn der Vektor alle Null ist-Rückgabe 1
    if np.count_nonzero(v2) == 0:
        return -1
    else:
        return np.dot(v1, v2) / (v1_norm * np.linalg.norm(v2))

cos_sim = [get_cos_similarity(matrix_x300[i]) for i in range(len(group_t))]
print('Cosign Similarity result length:', len(cos_sim))

#Sortieren Sie, indem Sie den Index verlassen
cos_sim_sorted = np.argsort(cos_sim)

#Ab dem Ende des Arrays in aufsteigender Reihenfolge sortiert-10(-11)Ausgabe bis zu eins nach dem anderen
for index in cos_sim_sorted[:-11:-1]:
    print('{}\t{}'.format(group_t.index[index], cos_sim[index]))

Kommentar beantworten

Dies ist der Hauptteil dieser Zeit. Es wird nur addiert und subtrahiert.

# 'vec("Spain") - vec("Madrid") + vec("Athens")Vektorberechnung
vec = matrix_x300[group_t.index.get_loc('Spain')] \
      - matrix_x300[group_t.index.get_loc('Madrid')] \
      + matrix_x300[group_t.index.get_loc('Athens')]

Dies ist das endgültige Ausgabeergebnis. Ist Griechenland die richtige Antwort in Bezug auf die Bedeutung, da die Hauptstadt Madrid von Spanien abgezogen und Athen hinzugefügt wird? Griechenland belegte mit einer Kosinusähnlichkeit von 0,686 den 12. Platz.

Spain	0.8178213952646727
Sweden	0.8071582503798717
Austria	0.7795030693787409
Italy	0.7466099164394225
Germany	0.7429125848677439
Belgium	0.729240312232219
Netherlands	0.7193045612969573
Télévisions	0.7067876635156688
Denmark	0.7062857691945504
France	0.7014078181006329

Recommended Posts

100 Sprachverarbeitung Knock-89: Analogie mit additiver Konstitutivität
100 Sprachverarbeitung Knock Kapitel 1 von Python
100 Sprachverarbeitungsklopfen (2020): 28
100 Sprachverarbeitungsklopfen (2020): 38
100 Sprachverarbeitung klopfen 00 ~ 02
100 Sprachverarbeitung Knock-91: Vorbereitung von Analogiedaten
100 Sprachverarbeitung klopfen 2020 [00 ~ 39 Antwort]
100 Sprachverarbeitung klopfen 2020 [00-79 Antwort]
100 Sprachverarbeitung klopfen 2020 [00 ~ 69 Antwort]
100 Amateur-Sprachverarbeitungsklopfen: 17
100 Sprachverarbeitung klopfen 2020 [00 ~ 49 Antwort]
100 Sprachverarbeitung Knock-52: Stemming
100 Sprachverarbeitung Knock Kapitel 1
100 Amateur-Sprachverarbeitungsklopfen: 07
100 Sprachverarbeitung Knock 2020 Kapitel 3
100 Sprachverarbeitung Knock 2020 Kapitel 2
100 Amateur-Sprachverarbeitungsklopfen: 09
100 Amateur-Sprachverarbeitungsklopfen: 47
100 Sprachverarbeitung Knock-53: Tokenisierung
100 Amateur-Sprachverarbeitungsklopfen: 97
100 Sprachverarbeitung klopfen 2020 [00 ~ 59 Antwort]
100 Amateur-Sprachverarbeitungsklopfen: 67
100 Sprachverarbeitung Knock-99 (mit Pandas): Visualisierung durch t-SNE
100 Sprachverarbeitungsklopfen mit Python 2015
100 Sprachverarbeitung Knock-51: Wortausschnitt
100 Sprachverarbeitung Knock-58: Extraktion von Taple
100 Sprachverarbeitung Knock-57: Abhängigkeitsanalyse
100 Sprachverarbeitung Knock-50: Satzumbruch
100 Sprachverarbeitung Knock Kapitel 1 (Python)
100 Sprachverarbeitung Knock Kapitel 2 (Python)
100 Sprachverarbeitung Knock-25: Vorlagenextraktion
Sprachverarbeitung 100 Knock-87: Wortähnlichkeit
Ich habe versucht, 100 Sprachverarbeitung klopfen 2020
100 Sprachverarbeitung Knock-56: Co-Referenz-Analyse
Lösen von 100 Sprachverarbeitungsklopfen 2020 (01. "Patatokukashi")
100 Amateur-Sprachverarbeitungsklopfen: Zusammenfassung
Vergleich der Stapelverarbeitungsgeschwindigkeit nach Sprache
100 Sprachverarbeitung Knock 2020 Kapitel 2: UNIX-Befehle
100 Sprachverarbeitung Knock 2015 Kapitel 5 Abhängigkeitsanalyse (40-49)
100 Sprachverarbeitungsklopfen mit Python (Kapitel 1)
100 Sprachverarbeitung Knock Kapitel 1 in Python
100 Sprachverarbeitung Knock 2020 Kapitel 4: Morphologische Analyse
100 Sprachverarbeitung Knock 2020 Kapitel 9: RNN, CNN
100 Sprachverarbeitung Knock-76 (mit Scicit-Learn): Beschriftung
100 Sprachverarbeitung Knock-55: Extraktion eindeutiger Ausdrücke
Ich habe versucht, 100 Sprachverarbeitung klopfen 2020: Kapitel 3
100 Sprachverarbeitung Knock-82 (Kontextwort): Kontextextraktion
100 Sprachverarbeitungsklopfen mit Python (Kapitel 3)
100 Sprachverarbeitungsklopfen: Kapitel 1 Vorbereitungsbewegung
100 Sprachverarbeitung Knock 2020 Kapitel 6: Maschinelles Lernen
100 Sprachverarbeitung Knock Kapitel 4: Morphologische Analyse
Sprachverarbeitung 100 knock-86: Wortvektoranzeige
100 Sprachverarbeitung Knock 2020 Kapitel 10: Maschinelle Übersetzung (90-98)
100 Sprachverarbeitung Knock 2020 Kapitel 5: Abhängigkeitsanalyse
100 Sprachverarbeitung Knock-28: Entfernen des MediaWiki-Markups
100 Sprachverarbeitung Knock 2020 Kapitel 7: Word Vector
100 Sprachverarbeitung Knock 2020 Kapitel 8: Neuronales Netz
100 Sprachverarbeitung Knock-59: Analyse der S-Formel
Python-Anfänger versucht 100 Sprachverarbeitung klopfen 2015 (05 ~ 09)
Sprachverarbeitung 100 Knocks-31 (mit Pandas): Verben
100 Sprachverarbeitung klopfen 2020 "für Google Colaboratory"