[PYTHON] 100 Sprachverarbeitung Knock-76 (mit Scicit-Learn): Beschriftung

Dies ist die Aufzeichnung der 76. "Kennzeichnung" von Language Processing 100 Knock 2015. Knocks Frageninhalt ist mit Vorhersagen für Trainingsdaten gekennzeichnet, aber diesmal wage ich es, dies mit Testdaten zu tun. Bis jetzt habe ich es nicht in den Block gepostet, da es im Grunde dasselbe war wie "Amateur-Sprachverarbeitung 100 Klopfen". , "Kapitel 8: Maschinelles Lernen" wurde ernst genommen und teilweise geändert. Ich werde posten. Ich benutze hauptsächlich scikit-learn.

Referenzlink

Verknüpfung Bemerkungen
076.Beschriftung.ipynb Antwortprogramm GitHub Link
100 Klicks Amateur-Sprachverarbeitung:76 Ich bin Ihnen immer zu Dank verpflichtet, wenn ich auf 100 Sprachverarbeitung klopfe
Einführung in Python mit 100 Klopfen Sprachverarbeitung#76 -Maschinelles Lernen, Scikit-Vorhersagewahrscheinlichkeit beim Lernen scikit-Klopfen Sie das Ergebnis mit lernen

Umgebung

Art Ausführung Inhalt
OS Ubuntu18.04.01 LTS Es läuft virtuell
pyenv 1.2.15 Ich benutze pyenv, weil ich manchmal mehrere Python-Umgebungen benutze
Python 3.6.9 python3 auf pyenv.6.Ich benutze 9
3.7 oder 3.Es gibt keinen tiefen Grund, keine 8er-Serie zu verwenden
Pakete werden mit venv verwaltet

In der obigen Umgebung verwende ich die folgenden zusätzlichen Python-Pakete. Einfach mit normalem Pip installieren.

Art Ausführung
matplotlib 3.1.1
numpy 1.17.4
pandas 0.25.3
scikit-learn 0.21.3

Aufgabe

Kapitel 8: Maschinelles Lernen

In diesem Kapitel [Satzpolaritätsdatensatz] von Movie Review Data, veröffentlicht von Bo Pang und Lillian Lee. v1.0](http://www.cs.cornell.edu/people/pabo/movie-review-data/rt-polaritydata.README.1.0.txt) wird verwendet, um den Satz positiv oder negativ zu machen. Arbeiten Sie an der Aufgabe (Polaritätsanalyse), um sie als (negativ) zu klassifizieren.

76. Kennzeichnung

Wenden Sie das logistische Regressionsmodell auf die Trainingsdaten an und geben Sie das richtige Etikett, das vorhergesagte Etikett und die vorhergesagte Wahrscheinlichkeit in tabulatorgetrenntem Format aus.

Dieses Mal wird der Teil "für Trainingsdaten" ignoriert und die Testdaten werden verwendet. Ich dachte, dass Testdaten nützlicher wären als Trainingsdaten.

Antworten

Antwortprogramm [076. Labeling.ipynb](https://github.com/YoheiFukuhara/nlp100/blob/master/08.%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7% BF% 92 / 076.% E3% 83% A9% E3% 83% 99% E3% 83% AB% E4% BB% 98% E3% 81% 91.ipynb)

Grundsätzlich [vorheriges "Antwortprogramm (Analyse) 075. Gewicht von identity.ipynb"](https://github.com/YoheiFukuhara/nlp100/blob/master/08.%E6%A9%9F%E6% A2% B0% E5% AD% A6% E7% BF% 92 / 075.% E7% B4% A0% E6% 80% A7% E3% 81% AE% E9% 87% 8D% E3% 81% BF.ipynb ) Mit Vorhersage- und Dateiausgabelogik.

import csv

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.pipeline import Pipeline
from sklearn.base import BaseEstimator, TransformerMixin

#Klasse zur Verwendung der Wortvektorisierung in GridSearchCV
class myVectorizer(BaseEstimator, TransformerMixin):
    def __init__(self, method='tfidf', min_df=0.0005, max_df=0.10):
        self.method = method
        self.min_df = min_df
        self.max_df = max_df

    def fit(self, x, y=None):
        if self.method == 'tfidf':
            self.vectorizer = TfidfVectorizer(min_df=self.min_df, max_df=self.max_df)
        else:
            self.vectorizer = CountVectorizer(min_df=self.min_df, max_df=self.max_df)
        self.vectorizer.fit(x)
        return self

    def transform(self, x, y=None):
        return self.vectorizer.transform(x)
		
#Parameter für GridSearchCV
PARAMETERS = [
    {
        'vectorizer__method':['tfidf', 'count'], 
        'vectorizer__min_df': [0.0003, 0.0004], 
        'vectorizer__max_df': [0.07, 0.10], 
        'classifier__C': [1, 3],    #Ich habe auch 10 ausprobiert, aber der SCORE ist niedrig, nur weil er langsam ist
        'classifier__solver': ['newton-cg', 'liblinear']},
    ]

#Datei lesen
def read_csv_column(col):
    with open('./sentiment_stem.txt') as file:
        reader = csv.reader(file, delimiter='\t')
        header = next(reader)
        return [row[col] for row in reader]    
		
x_all = read_csv_column(1)
y_all = read_csv_column(0)
x_train, x_test, y_train, y_test = train_test_split(x_all, y_all)

def train(x_train, y_train, file):
    pipline = Pipeline([('vectorizer', myVectorizer()), ('classifier', LogisticRegression())])
    
    #clf steht für Klassifizierung
    clf = GridSearchCV(
            pipline, # 
            PARAMETERS,           #Parametersatz, den Sie optimieren möchten
            cv = 5)               #Anzahl der Kreuztests
    
    clf.fit(x_train, y_train)
    pd.DataFrame.from_dict(clf.cv_results_).to_csv(file)

    print('Grid Search Best parameters:', clf.best_params_)
    print('Grid Search Best validation score:', clf.best_score_)
    print('Grid Search Best training score:', clf.best_estimator_.score(x_train, y_train))    
    
    #Ausgabe des Elementgewichts
    output_coef(clf.best_estimator_)
    
    return clf.best_estimator_

#Ausgabe des Elementgewichts
def output_coef(estimator):
    vec = estimator.named_steps['vectorizer']
    clf = estimator.named_steps['classifier']

    coef_df = pd.DataFrame([clf.coef_[0]]).T.rename(columns={0: 'Coefficients'})
    coef_df.index = vec.vectorizer.get_feature_names()
    coef_sort = coef_df.sort_values('Coefficients')
    coef_sort[:10].plot.barh()
    coef_sort.tail(10).plot.barh()

def validate(estimator, x_test, y_test):
    
    for i, (x, y) in enumerate(zip(x_test, y_test)):
        y_pred = estimator.predict_proba([x])
        if y == np.argmax(y_pred).astype( str ):
            if y == '1':
                result = 'TP:Die richtige Antwort ist positiv und die Vorhersage ist positiv'
            else:
                result = 'TN:Die richtige Antwort ist negativ und die Vorhersage ist negativ'
        else:
            if y == '1':
                result = 'FN:Die richtige Antwort ist positiv und die Vorhersage ist negativ'
            else:
                result = 'FP:Die richtige Antwort ist negativ und die Vorhersage ist positiv'
        print(result, y_pred, x)
        if i == 29:
            break

    #TSV-Listenausgabe
    y_pred = estimator.predict(x_test)
    y_prob = estimator.predict_proba(x_test)

    results = pd.DataFrame([y_test, y_pred, y_prob.T[1], x_test]).T.rename(columns={ 0: 'Richtige Antwort', 1 : 'Prognose', 2: 'Prognose確率(positiv)', 3 :'Wortzeichenfolge'})
    results.to_csv('./predict.txt' , sep='\t')

estimator = train(x_train, y_train, 'gs_result.csv')
validate(estimator, x_test, y_test)

Kommentar beantworten

Die folgende tabulatorgetrennte Datei wird von der Funktion "to_csv" von "pandas" ausgegeben.

Säule Artikel Beispiel
1. Reihe Richtiges Antwortetikett もともと持っていたRichtiges Antwortetikett 0(0 ist negativ)
2. Reihe Vorhersage-Label predict_probaVorhersageergebnis erhalten mit der Funktion 0(0 ist negativ)
3. Reihe Vorhersagewahrscheinlichkeit predict_proba関数を使って取得したVorhersagewahrscheinlichkeit。
Die zweite Spalte des Rückgabewerts der Funktion ist die Wahrscheinlichkeit, positiv zu sein
0.4436
4. Reihe Wortzeichenfolge もともと持っていたWortzeichenfolgeの説明変数 empti shell epic rather real deal
#TSV-Listenausgabe
y_pred = estimator.predict(x_test)
y_prob = estimator.predict_proba(x_test)

results = pd.DataFrame([y_test, y_pred, y_prob.T[1], x_test]).T.rename(columns={ 0: 'Richtige Antwort', 1 : 'Prognose', 2: 'Prognose確率(positiv)', 3 :'Wortzeichenfolge'})
results.to_csv('./predict.txt' , sep='\t')

Ausgabedatei [Predict.txt](https://github.com/YoheiFukuhara/nlp100/blob/master/08.%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7%BF% 92 / Predict.txt) ist auf GitHub.

Recommended Posts

100 Sprachverarbeitung Knock-76 (mit Scicit-Learn): Beschriftung
100 Sprachverarbeitung Knock-73 (mit Scikit-Learn): Lernen
100 Sprachverarbeitung Knock-74 (mit Scicit-Learn): Vorhersage
100 Sprachverarbeitung Knock-97 (mit Scicit-Learn): k-bedeutet Clustering
100-Sprach-Verarbeitung Knock-79 (mit Scikit-Learn): Präzisions-Recall-Grafikzeichnung
100 Sprachverarbeitung Knock-75 (mit Scicit-Learn): Gewicht der Identität
100 Sprachverarbeitungsklopfen (2020): 28
100 Sprachverarbeitungsklopfen (2020): 38
Sprachverarbeitung 100 Knocks-31 (mit Pandas): Verben
100 Sprachverarbeitung klopfen 00 ~ 02
100 Sprachverarbeitung Knock-38 (mit Pandas): Histogramm
100 Sprachverarbeitung Knock-77 (mit Scicit-Learn): Messung der korrekten Antwortrate
100 Sprachverarbeitung Knock-33 (mit Pandas): Sahen Nomen
100 Sprachverarbeitung Knock-71 (mit Stanford NLP): Stoppwort
100 Sprachverarbeitung Knock-35 (mit Pandas): Nomenklatur
100 Sprachverarbeitung Knock-39 (mit Pandas): Zipf-Gesetz
100 Sprachverarbeitung Knock-34 (mit Pandas): "B von A"
100 Sprachverarbeitung klopfen 2020 [00 ~ 39 Antwort]
100 Sprachverarbeitung klopfen 2020 [00-79 Antwort]
100 Sprachverarbeitung klopfen 2020 [00 ~ 69 Antwort]
100 Sprachverarbeitung Knock 2020 Kapitel 1
100 Amateur-Sprachverarbeitungsklopfen: 17
100 Sprachverarbeitung klopfen 2020 [00 ~ 49 Antwort]
100 Sprachverarbeitung Knock-52: Stemming
100 Sprachverarbeitung Knock Kapitel 1
100 Amateur-Sprachverarbeitungsklopfen: 07
100 Sprachverarbeitung Knock 2020 Kapitel 3
100 Sprachverarbeitung Knock 2020 Kapitel 2
100 Amateur-Sprachverarbeitungsklopfen: 09
100 Amateur-Sprachverarbeitungsklopfen: 47
100 Sprachverarbeitung Knock-53: Tokenisierung
100 Amateur-Sprachverarbeitungsklopfen: 97
100 Sprachverarbeitung klopfen 2020 [00 ~ 59 Antwort]
100 Amateur-Sprachverarbeitungsklopfen: 67
100 Sprachverarbeitung Knock-90 (mit Gensim): Lernen mit word2vec
100 Sprachverarbeitung Knock-20 (unter Verwendung von Pandas): Lesen von JSON-Daten
100 Sprachverarbeitung Knock-32 (mit Pandas): Prototyp des Verbs
100-Sprach-Verarbeitung Knock-98 (unter Verwendung von Pandas): Clustering nach Ward-Methode
100 Sprachverarbeitung Knock-99 (mit Pandas): Visualisierung durch t-SNE
100 Sprachverarbeitung Knock-95 (mit Pandas): Bewertung mit WordSimilarity-353
100 Sprachverarbeitung Knock-72 (unter Verwendung von Stanford NLP): Identitätsextraktion
100 Sprachverarbeitung Knock-51: Wortausschnitt
100 Sprachverarbeitung Knock-58: Extraktion von Taple
100 Sprachverarbeitung Knock-57: Abhängigkeitsanalyse
100 Sprachverarbeitung Knock-50: Satzumbruch
100 Sprachverarbeitung Knock Kapitel 1 (Python)
100 Sprachverarbeitung Knock Kapitel 2 (Python)
100 Sprachverarbeitung Knock-25: Vorlagenextraktion
Sprachverarbeitung 100 Knock-87: Wortähnlichkeit
Ich habe versucht, 100 Sprachverarbeitung klopfen 2020
100 Sprachverarbeitung Knock-56: Co-Referenz-Analyse
Lösen von 100 Sprachverarbeitungsklopfen 2020 (01. "Patatokukashi")
100 Amateur-Sprachverarbeitungsklopfen: Zusammenfassung
100 Sprachverarbeitung Knock-92 (mit Gensim): Anwendung auf Analogiedaten
100 Sprachverarbeitung Knock-36 (unter Verwendung von Pandas): Häufigkeit des Auftretens von Wörtern
100 Sprachverarbeitung Knock: Kapitel 2 UNIX-Befehlsgrundlagen (mit Pandas)
100 Sprachverarbeitung Knock-83 (mit Pandas): Messung der Wort- / Kontexthäufigkeit
100 Sprachverarbeitung Knock-30 (unter Verwendung von Pandas): Lesen der Ergebnisse der morphologischen Analyse
100 Sprachverarbeitung Knock-94 (mit Gensim): Ähnlichkeitsberechnung mit WordSimilarity-353
100 Sprachverarbeitung Knock 2020 Kapitel 2: UNIX-Befehle
100 Sprachverarbeitung Knock 2015 Kapitel 5 Abhängigkeitsanalyse (40-49)