[Python] 100 Schläge auf Data Science (strukturierte Datenverarbeitung) 026 Erläuterung

Youtube Videokommentar ist ebenfalls verfügbar.

Problem

P-026: Suchen Sie für den Datenrahmen für Belegdetails (df_receipt) das neueste Verkaufsdatum (sales_ymd) und das älteste Verkaufsdatum für jede Kunden-ID (customer_id) und zeigen Sie 10 verschiedene Daten an.

Antworten

Code


df_sales_ymd = df_receipt.groupby('customer_id').agg({'sales_ymd':['max','min']}).reset_index()

df_sales_ymd.columns = ['customer_id','sales_ymd_max','sales_ymd_min']

df_sales_ymd.query('sales_ymd_max != sales_ymd_min').head(10)

Ausgabe

customer_id sales_ymd_max sales_ymd_min
1 CS001114000005 20190731 20180503
2 CS001115000010 20190405 20171228
3 CS001205000004 20190625 20170914
4 CS001205000006 20190224 20180207
13 CS001214000009 20190902 20170306
14 CS001214000017 20191006 20180828
16 CS001214000048 20190929 20171109
17 CS001214000052 20190617 20180208
20 CS001215000005 20181021 20170206
21 CS001215000040 20171022 20170214

Kommentar

Code


df_sales_ymd.columns = ["_".join(pair) for pair in df_sales_ymd.columns]

Recommended Posts

[Python] 100 Schläge auf Data Science (strukturierte Datenverarbeitung) 018 Erläuterung
[Python] 100 Schläge auf Data Science (strukturierte Datenverarbeitung) 023 Erläuterung
[Python] 100 Schläge auf Data Science (strukturierte Datenverarbeitung) 030 Erläuterung
[Python] 100 Schläge auf Data Science (strukturierte Datenverarbeitung) 022 Erläuterung
[Python] 100 Schläge auf Data Science (strukturierte Datenverarbeitung) 017 Erläuterung
[Python] 100 Schläge auf Data Science (strukturierte Datenverarbeitung) 026 Erläuterung
[Python] 100 Schläge auf Data Science (strukturierte Datenverarbeitung) 016 Erläuterung
[Python] 100 Schläge auf Data Science (strukturierte Datenverarbeitung) 024 Erläuterung
[Python] 100 Schläge auf Data Science (strukturierte Datenverarbeitung) 027 Erläuterung
[Python] 100 Schläge auf Data Science (strukturierte Datenverarbeitung) 029 Erläuterung
[Python] 100 Schläge auf Data Science (strukturierte Datenverarbeitung) 015 Erläuterung
[Python] 100 Schläge auf Data Science (strukturierte Datenverarbeitung) 028 Erläuterung
"Data Science 100 Knock (Strukturierte Datenverarbeitung)" Python-007 Erläuterung
"Data Science 100 Knock (Strukturierte Datenverarbeitung)" Python-006 Erläuterung
"Data Science 100 Knock (Strukturierte Datenverarbeitung)" Python-001 Erläuterung
"Data Science 100 Knock (Strukturierte Datenverarbeitung)" Python-002 Erläuterung
[Python] 100 Schläge auf Data Science (strukturierte Datenverarbeitung) 021 Erläuterung
"Data Science 100 Knock (Strukturierte Datenverarbeitung)" Python-005 Erläuterung
"Data Science 100 Knock (Strukturierte Datenverarbeitung)" Python-004 Erläuterung
[Python] 100 Schläge auf Data Science (strukturierte Datenverarbeitung) 020 Erläuterung
[Python] 100 Schläge auf Data Science (strukturierte Datenverarbeitung) 025 Erläuterung
"Data Science 100 Knock (Strukturierte Datenverarbeitung)" Python-003 Erläuterung
[Python] 100 Schläge auf Data Science (strukturierte Datenverarbeitung) 019 Erläuterung
[Python] 100 Schläge auf Data Science (strukturierte Datenverarbeitung) 001-010 Impressionen + Zusammenfassung der Kommentare
Versuchen Sie "100 Schläge auf Data Science" ①
Erste Schritte mit Python mit 100 Klopfen bei der Sprachverarbeitung
Vorbereitung zum Versuch "Data Science 100 Knock (Strukturierte Datenverarbeitung)"
Fordern Sie 100 Data Science-Schläge heraus
Umgebungskonstruktion (Windows 10) für 100 Schläge Data Science (strukturierte Datenverarbeitung)
Deshalb habe ich Pandas verlassen [Data Science 100 Knock (Strukturierte Datenverarbeitung) # 2]
Deshalb habe ich Pandas verlassen [Data Science 100 Knock (Strukturierte Datenverarbeitung) # 1]
Deshalb habe ich Pandas verlassen [Data Science 100 Knock (Strukturierte Datenverarbeitung) # 3]
Deshalb habe ich Pandas verlassen [Data Science 100 Knock (Strukturierte Datenverarbeitung) # 5]
Deshalb habe ich Pandas verlassen [Data Science 100 Knock (Strukturierte Datenverarbeitung) # 4]
Deshalb habe ich Pandas verlassen [Data Science 100 Knock (Strukturierte Datenverarbeitung) # 6]
Starten Sie Data Science in der Cloud
100 Bildverarbeitung mit Python Knock # 2 Graustufen
100 Bildverarbeitung mit Python Knock # 8 Max Pooling
Ich habe Udemys "Practical Python Data Science" ausprobiert.
Die Bildverarbeitung mit Python 100 führt zu einem durchschnittlichen Pooling von # 7
Bildverarbeitung mit Python 100 Knock # 9 Gauß-Filter
Bücher über Datenwissenschaft, die 2020 gelesen werden sollen
Führen Sie Python Script regelmäßig in der AWS Data Pipeline aus
Folium: Visualisieren Sie Daten auf einer Karte mit Python
Versuchen Sie, MLB-Daten auf Mac und Python zu importieren
TensorFlow: Führen Sie in Python gelernte Daten unter Android aus
Führen Sie Python auf Apache aus, um InfluxDB-Daten anzuzeigen
100 Sprachverarbeitungsklopfen 03 ~ 05
100 Sprachverarbeitungsklopfen (2020): 40
100 Sprachverarbeitungsklopfen (2020): 32
[Python] Fordere 100 Schläge heraus! (015 ~ 019)
100 Sprachverarbeitungsklopfen (2020): 35
Python-Bildverarbeitung
100 Sprachverarbeitungsklopfen (2020): 47
100 Sprachverarbeitungsklopfen (2020): 39
Python unter Windows
Twitter mit Python3
100 Sprachverarbeitungsklopfen (2020): 22
[Python] Fordere 100 Schläge heraus! (030-034)