[PYTHON] Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 9

TOP PAGE

Lerntechnik

SGD lr = 0.01 image.png

Momentum SGD lr = 0.01 Das Lernen hörte unterwegs auf. War lr zu groß? (In dem Buch ist lr = 0,005.) image.png

SGD , Batch Normalization lr = 0.01 Die Chargennormalisierung verbesserte die Genauigkeit. image.png

Die Details der Chargennormalisierung sind nicht in dem Buch enthalten, daher habe ich mich mit dem folgenden Artikel befasst. https://qiita.com/omiita/items/01855ff13cc6d3720ea4 -Batch nom ist ein Mini-Batch, der den Wert normalisiert, bevor die Aktivierungsfunktion auf durchschnittlich 0 und bei Verteilung für jeden Kanal auf 1 gesetzt wird. ・ Der Grund für die Verbesserung mit Batch Nom ist unbekannt. Ich habe verstanden.

Überraschenderweise ist Shogi scheißschwach. Was ist die Ursache?

Spielvideo https://youtu.be/9YBImGLzm1w

Letzte Figur wie Scheiße image.png

Recommended Posts

Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 8
Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 12 3
Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 7
Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 10 6-9
Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 10
Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 7 5-7
Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 9
Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 12 3
Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 12 3
Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 12 1-2
Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 12 3
Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 12 3 ~ 5
Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 7 9
Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 8 5-9
Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 8 1-4
Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 12 3
Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 7 8
Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 7 1-4
Deep Learning mit Shogi AI auf Mac und Google Colab
Deep Learning mit Shogi AI auf Mac und Google Colab Kapitel 1-6
Lernen Sie mit Shogi AI Deep Learning auf Mac und Google Colab Verwenden Sie Google Colab
Tiefes Lernen auf Mac- und Google Colab-Wörtern, die mit Shogi AI gelernt wurden
Maschinelles Lernen mit Pytorch in Google Colab
Schritte zum schnellen Erstellen einer umfassenden Lernumgebung auf einem Mac mit TensorFlow und OpenCV
Spielen Sie mit Turtle auf Google Colab
"Learning word2vec" und "Visualisierung mit Tensorboard" auf Colaboratory
Deep Learning von Grund auf neu Die Theorie und Implementierung des mit Python erlernten Deep Learning Kapitel 3
Installieren Sie Selenium auf Ihrem Mac und probieren Sie es mit Python aus
Deep Learning Bildanalyse beginnend mit Kaggle und Keras
[AI] Deep Metric Learning
Vorhersagen von Tags durch Extrahieren von Musikfunktionen mit Deep Learning
"Deep Learning from Grund" Memo zum Selbststudium (Nr. 14) Führen Sie das Programm in Kapitel 4 in Google Colaboratory aus
[Google Colab] So unterbrechen Sie das Lernen und setzen es dann fort
Erkennen Sie Ihren Chef mit Deep Learning und verbergen Sie den Bildschirm
Ein Fehler, der beim Erlernen von YOLO mit Google Colab aufgetreten ist
Einstellungen der Python3-basierten maschinellen Lernumgebung auf dem Mac (Koexistenz mit Python2)
HIKAKIN und Max Murai mit Live-Spielvideo und Deep Learning
Versuchen Sie es mit TensorFlow
Deep Kernel Learning mit Pyro
Versuchen Sie Deep Learning mit FPGA
Catalina auf Mac und Pyenv
Generiere Pokemon mit Deep Learning
Erstellen Sie mit Python und GAS Termine für AtCoder-Wettbewerbe in Google Kalender
Erstellen Sie mit Anaconda und PyCharm eine Python-Umgebung auf Ihrem Mac
Fehler und Lösung bei der Installation von Python3 mit Homebrew auf einem Mac (Catalina 10.15)
So führen Sie Jupyter und Spark auf einem Mac mit minimalen Einstellungen aus
Die stärkste Möglichkeit, MeCab und CaboCha mit Google Colab zu verwenden
[Lesehinweis] Praktisches maschinelles Lernen mit Scikit-Learn, Keras und TensorFlow Kapitel 1
Installieren Sie lp_solve unter Mac OSX und rufen Sie es mit Python auf.
Deep Learning / Deep Learning von Grund auf neu 2 Kapitel 4 Memo
Probieren Sie Deep Learning mit FPGA-Select-Gurken aus
Identifikation der Katzenrasse mit Deep Learning
Deep Learning / Deep Learning von Grund auf neu Kapitel 3 Memo
Tensor Flow mit Anakonda auf Mac
Machen Sie ASCII-Kunst mit tiefem Lernen
Versuchen Sie es mit TensorFlow Part 2
Einführung von OpenCV in Mac mit Homebrew