In diesem Programm werden Randbedingungen eingeführt, ohne die Größe der Steifigkeitsmatrix zu ändern, und simultane Gleichungen werden gelöst. Betrachten Sie bei Verwendung dieser Methode eine Lösungsmethode, wenn eine erzwungene Verschiebung ungleich Null angegeben wird. Dies ist das Ersetzen von Unbekannten und bekannten Zahlen in simultanen linearen Gleichungen und nicht so schwierig wie eine Denkweise.
Betrachten Sie als einfaches Beispiel die folgenden simultanen linearen Gleichungen.
Wenn die unbekannte Zahl $ x_1, x_3, f_2 $ und die bekannte Zahl $ f_1, f_3, x_2 $ ist, muss hier wie folgt umgeschrieben werden, um die Matrixoperation auszuführen.
Die obige Beziehung kann wie folgt erweitert und betrachtet werden.
Wenn $ \ delta_i $ und $ \ delta_j $ bekannt sind, sei $ k_ {ii} $ und $ k_ {jj} $ in der Steifheitsmatrix $ 1 $ und die anderen Elemente der Spalten $ i $ und $ j $. Wird auf Null gesetzt. Außerdem werden die Effekte der Spalten $ i $ und $ j $ in der Steifheitsmatrix auf die rechte Seite übertragen.
py_frame_r.py
import numpy as np
import sys
import time
def print_inp(fnameW,npoin,nele,nsec,npfix,nlod,ae,x,fp,mpfix,rdis,node):
fout=open(fnameW,'w')
# print out of input data
print('{0:>5s} {1:>5s} {2:>5s} {3:>5s} {4:>5s}'.format('npoin','nele','nsec','npfix','nlod'),file=fout)
print('{0:5d} {1:5d} {2:5d} {3:5d} {4:5d}'.format(npoin,nele,nsec,npfix,nlod),file=fout)
print('{0:>5s} {1:>15s} {2:>15s} {3:>15s}'.format('sec','A','I','E'),file=fout)
for i in range(0,nsec):
print('{0:5d} {1:15.7e} {2:15.7e} {3:15.7e}'.format(i+1,ae[0,i],ae[1,i],ae[2,i]),file=fout)
print('{0:>5s} {1:>15s} {2:>15s} {3:>15s} {4:>15s} {5:>15s} {6:>5s} {7:>5s} {8:>5s}'
.format('node','x','y','fx','fy','fr','kox','koy','kor'),file=fout)
for i in range(0,npoin):
lp=i+1
print('{0:5d} {1:15.7e} {2:15.7e} {3:15.7e} {4:15.7e} {5:15.7e} {6:5d} {7:5d} {8:5d}'
.format(lp,x[0,i],x[1,i],fp[3*lp-3],fp[3*lp-2],fp[3*lp-1],mpfix[0,i],mpfix[1,i],mpfix[2,i]),file=fout)
print('{0:>5s} {1:>5s} {2:>5s} {3:>5s} {4:>15s} {5:>15s} {6:>15s}'
.format('node','kox','koy','kor','rdis_x','rdis_y','rdis_r'),file=fout)
for i in range(0,npoin):
if 0<mpfix[0,i]+mpfix[1,i]+mpfix[2,i]:
lp=i+1
print('{0:5d} {1:5d} {2:5d} {3:5d} {4:15.7e} {5:15.7e} {6:15.7e}'
.format(lp,mpfix[0,i],mpfix[1,i],mpfix[2,i],rdis[0,i],rdis[1,i],rdis[2,i]),file=fout)
print('{0:>5s} {1:>5s} {2:>5s} {3:>5s}'.format('elem','i','j','sec'),file=fout)
for ne in range(0,nele):
print('{0:5d} {1:5d} {2:5d} {3:5d}'.format(ne+1,node[0,ne],node[1,ne],node[2,ne]),file=fout)
fout.close()
def print_out(fnameW,npoin,nele,disg,fsec):
fout=open(fnameW,'a')
# displacement
print('{0:>5s} {1:>15s} {2:>15s} {3:>15s}'.format('node','dis-x','dis-y','dis-r'),file=fout)
for i in range(0,npoin):
lp=i+1
print('{0:5d} {1:15.7e} {2:15.7e} {3:15.7e}'.format(lp,disg[3*lp-3],disg[3*lp-2],disg[3*lp-1]),file=fout)
# section force
print('{0:>5s} {1:>15s} {2:>15s} {3:>15s} {4:>15s} {5:>15s} {6:>15s}'
.format('elem','N_i','S_i','M_i','N_j','S_j','M_j'),file=fout)
for ne in range(0,nele):
print('{0:5d} {1:15.7e} {2:15.7e} {3:15.7e} {4:15.7e} {5:15.7e} {6:15.7e}'
.format(ne+1,fsec[0,ne],fsec[1,ne],fsec[2,ne],fsec[3,ne],fsec[4,ne],fsec[5,ne]),file=fout)
fout.close()
def STIFF(i,node,x,ae):
ek=np.zeros([6,6],dtype=np.float64) # local stiffness matrix
tt=np.zeros([6,6],dtype=np.float64) # transformation matrix
mpf=node[0,i]
mps=node[1,i]
x1=x[0,mpf-1]
y1=x[1,mpf-1]
x2=x[0,mps-1]
y2=x[1,mps-1]
xx=x2-x1
yy=y2-y1
el=np.sqrt(xx**2+yy**2)
mb=node[2,i]
aa=ae[0,mb-1]
am=ae[1,mb-1]
ee=ae[2,mb-1]
EA=ee*aa
EI=ee*am
ek[0,0]= EA/el; ek[0,1]= 0.0; ek[0,2]= 0.0; ek[0,3]=-EA/el; ek[0,4]= 0.0; ek[0,5]= 0.0
ek[1,0]= 0.0; ek[1,1]= 12*EI/el**3; ek[1,2]= 6*EI/el**2; ek[1,3]= 0.0; ek[1,4]=-12*EI/el**3; ek[1,5]= 6*EI/el**2
ek[2,0]= 0.0; ek[2,1]= 6*EI/el**2; ek[2,2]= 4*EI/el ; ek[2,3]= 0.0; ek[2,4]= -6*EI/el**2; ek[2,5]= 2*EI/el
ek[3,0]=-EA/el; ek[3,1]= 0.0; ek[3,2]= 0.0; ek[3,3]= EA/el; ek[3,4]= 0.0; ek[3,5]= 0.0
ek[4,0]= 0.0; ek[4,1]=-12*EI/el**3; ek[4,2]=-6*EI/el**2; ek[4,3]= 0.0; ek[4,4]= 12*EI/el**3; ek[4,5]=-6*EI/el**2
ek[5,0]= 0.0; ek[5,1]= 6*EI/el**2; ek[5,2]= 2*EI/el ; ek[5,3]= 0.0; ek[5,4]= -6*EI/el**2; ek[5,5]= 4*EI/el
s=yy/el
c=xx/el
tt[0,0]= c; tt[0,1]= s; tt[0,2]=0.0; tt[0,3]=0.0; tt[0,4]=0.0; tt[0,5]=0.0
tt[1,0]= -s; tt[1,1]= c; tt[1,2]=0.0; tt[1,3]=0.0; tt[1,4]=0.0; tt[1,5]=0.0
tt[2,0]=0.0; tt[2,1]=0.0; tt[2,2]=1.0; tt[2,3]=0.0; tt[2,4]=0.0; tt[2,5]=0.0
tt[3,0]=0.0; tt[3,1]=0.0; tt[3,2]=0.0; tt[3,3]= c; tt[3,4]= s; tt[3,5]=0.0
tt[4,0]=0.0; tt[4,1]=0.0; tt[4,2]=0.0; tt[4,3]= -s; tt[4,4]= c; tt[4,5]=0.0
tt[5,0]=0.0; tt[5,1]=0.0; tt[5,2]=0.0; tt[5,3]=0.0; tt[5,4]=0.0; tt[5,5]=1.0
return ek,tt,mpf,mps
# Main routine
start=time.time()
args = sys.argv
fnameR=args[1] # input data file
fnameW=args[2] # output data file
f=open(fnameR,'r')
text=f.readline()
text=text.strip()
text=text.split()
npoin=int(text[0]) # Number of nodes
nele =int(text[1]) # Number of elements
nsec =int(text[2]) # Number of sections
npfix=int(text[3]) # Number of restricted nodes
nlod =int(text[4]) # Number of loaded nodes
n=3*npoin
x =np.zeros([2,npoin],dtype=np.float64) # Coordinates of nodes
ae =np.zeros([3,nsec],dtype=np.float64) # Section characteristics
node =np.zeros([3,nele],dtype=np.int) # Node-element relationship
fp =np.zeros(3*npoin,dtype=np.float64) # External force vector
mpfix=np.zeros([3,npoin],dtype=np.int) # Ristrict conditions
rdis =np.zeros([3,npoin],dtype=np.float64) # Ristricted displacement
ir =np.zeros(6,dtype=np.int) # Work vector for matrix assembly
gk =np.zeros([n,n],dtype=np.float64) # Global stiffness matrix
fsec =np.zeros([6,nele],dtype=np.float64) # Section force vector
work =np.zeros(6,dtype=np.float64) # work vector for section force calculation
# section characteristics
for i in range(0,nsec):
text=f.readline()
text=text.strip()
text=text.split()
ae[0,i]=float(text[0]) #section area
ae[1,i]=float(text[1]) #moment of inertia
ae[2,i]=float(text[2]) #elastic modulus
# element-node
for i in range(0,nele):
text=f.readline()
text=text.strip()
text=text.split()
node[0,i]=int(text[0]) #node_1
node[1,i]=int(text[1]) #node_2
node[2,i]=int(text[2]) #section characteristic number
# node coordinates
for i in range(0,npoin):
text=f.readline()
text=text.strip()
text=text.split()
x[0,i]=float(text[0]) # x-coordinate
x[1,i]=float(text[1]) # y-coordinate
# boundary conditions (0:free, 1:restricted)
for i in range(0,npfix):
text=f.readline()
text=text.strip()
text=text.split()
lp=int(text[0]) #fixed node
mpfix[0,lp-1]=int(text[1]) #fixed in x-direction
mpfix[1,lp-1]=int(text[2]) #fixed in y-direction
mpfix[2,lp-1]=int(text[3]) #fixed in rotation
rdis[0,lp-1]=float(text[4]) #fixed displacement in x-direction
rdis[1,lp-1]=float(text[5]) #fixed displacement in y-direction
rdis[2,lp-1]=float(text[6]) #fixed displacement in z-direction
# load
if 1<=nlod:
for i in range(0,nlod):
text=f.readline()
text=text.strip()
text=text.split()
lp=int(text[0]) #loaded node
fp[3*lp-3]=float(text[1]) #load in x-direction
fp[3*lp-2]=float(text[2]) #load in y-direction
fp[3*lp-1]=float(text[3]) #load in rotation
f.close()
print_inp(fnameW,npoin,nele,nsec,npfix,nlod,ae,x,fp,mpfix,rdis,node)
# assembly of stiffness matrix
for ne in range(0,nele):
ek,tt,mpf,mps=STIFF(ne,node,x,ae)
ck=np.dot(np.dot(tt.T,ek),tt)
ir[5]=3*mps-1
ir[4]=ir[5]-1
ir[3]=ir[4]-1
ir[2]=3*mpf-1
ir[1]=ir[2]-1
ir[0]=ir[1]-1
for i in range(0,6):
for j in range(0,6):
it=ir[i]
jt=ir[j]
gk[it,jt]=gk[it,jt]+ck[i,j]
# treatment of boundary conditions
for i in range(0,npoin):
for j in range(0,3):
if mpfix[j,i]==1:
iz=i*3+j
fp[iz]=0.0
for k in range(0,n):
fp[k]=fp[k]-rdis[j,i]*gk[k,iz]
gk[k,iz]=0.0
gk[iz,iz]=1.0
# solution of simultaneous linear equations
disg = np.linalg.solve(gk, fp)
# recovery of restricted displacements
for i in range(0,npoin):
for j in range(0,3):
if mpfix[j,i]==1:
iz=i*3+j
for k in range(0,n):
disg[iz]=rdis[j,i]
# calculation of section force
for ne in range(0,nele):
ek,tt,mpf,mps=STIFF(ne,node,x,ae)
work[0]=disg[3*mpf-3]; work[1]=disg[3*mpf-2]; work[2]=disg[3*mpf-1]
work[3]=disg[3*mps-3]; work[4]=disg[3*mps-2]; work[5]=disg[3*mps-1]
fsec[:,ne]=np.dot(ek,np.dot(tt,work))
print_out(fnameW,npoin,nele,disg,fsec)
dtime=time.time()-start
print('n={0} time={1:.3f}'.format(n,dtime)+' sec')
fout=open(fnameW,'a')
print('n={0} time={1:.3f}'.format(n,dtime)+' sec',file=fout)
fout.close()
cat << EOT > inp_r0.txt
6 5 2 3 1
1.0 1.0 1.0
1.0 1.0 1.0
1 2 1
3 4 1
5 6 1
2 4 2
4 6 2
0 0
0 3.5
6 0
6 3.5
12 0
12 3.5
1 1 1 1 0 0 0
3 1 1 1 0 0 0
5 1 1 1 0 0 0
2 4 0 0
EOT
cat << EOT > inp_r1.txt
6 5 2 4 0
1.0 1.0 1.0
1.0 1.0 1.0
1 2 1
3 4 1
5 6 1
2 4 2
4 6 2
0 0
0 3.5
6 0
6 3.5
12 0
12 3.5
1 1 1 1 0 0 0
3 1 1 1 0 0 0
5 1 1 1 0 0 0
2 1 1 1 16.079284 2.3039125 -4.5858390
EOT
python3 py_frame_r.py inp_r0.txt out_r0.txt
python3 py_frame_r.py inp_r1.txt out_r1.txt
out_r0.txt
npoin nele nsec npfix nlod
6 5 2 3 1
sec A I E
1 1.0000000e+00 1.0000000e+00 1.0000000e+00
2 1.0000000e+00 1.0000000e+00 1.0000000e+00
node x y fx fy fr kox koy kor
1 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 1 1 1
2 0.0000000e+00 3.5000000e+00 4.0000000e+00 0.0000000e+00 0.0000000e+00 0 0 0
3 6.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 1 1 1
4 6.0000000e+00 3.5000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0 0 0
5 1.2000000e+01 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 1 1 1
6 1.2000000e+01 3.5000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0 0 0
node kox koy kor rdis_x rdis_y rdis_r
1 1 1 1 0.0000000e+00 0.0000000e+00 0.0000000e+00
3 1 1 1 0.0000000e+00 0.0000000e+00 0.0000000e+00
5 1 1 1 0.0000000e+00 0.0000000e+00 0.0000000e+00
elem i j sec
1 1 2 1
2 3 4 1
3 5 6 1
4 2 4 2
5 4 6 2
node dis-x dis-y dis-r
1 0.0000000e+00 0.0000000e+00 0.0000000e+00
2 1.6079284e+01 2.3039125e+00 -4.5858390e+00
3 0.0000000e+00 0.0000000e+00 0.0000000e+00
4 5.6044784e+00 -1.4855500e+00 -6.2687943e-01
5 0.0000000e+00 0.0000000e+00 0.0000000e+00
6 2.6990174e+00 -8.1836247e-01 -5.5363182e-01
elem N_i S_i M_i N_j S_j M_j
1 -6.5826071e-01 2.2541991e+00 5.2550881e+00 6.5826071e-01 -2.2541991e+00 2.6346087e+00
2 4.2444286e-01 1.2615574e+00 2.3868338e+00 -4.2444286e-01 -1.2615574e+00 2.0286170e+00
3 2.3381785e-01 4.8424351e-01 1.0056067e+00 -2.3381785e-01 -4.8424351e-01 6.8924562e-01
4 1.7458009e+00 -6.5826071e-01 -2.6346087e+00 -1.7458009e+00 6.5826071e-01 -1.3149555e+00
5 4.8424351e-01 -2.3381785e-01 -7.1366148e-01 -4.8424351e-01 2.3381785e-01 -6.8924562e-01
n=18 time=0.005 sec
Geben Sie die Verschiebung des in Fall 1 angegebenen Lastpunkts als erzwungene Verschiebung ein
out_r1.txt
npoin nele nsec npfix nlod
6 5 2 4 0
sec A I E
1 1.0000000e+00 1.0000000e+00 1.0000000e+00
2 1.0000000e+00 1.0000000e+00 1.0000000e+00
node x y fx fy fr kox koy kor
1 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 1 1 1
2 0.0000000e+00 3.5000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 1 1 1
3 6.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 1 1 1
4 6.0000000e+00 3.5000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0 0 0
5 1.2000000e+01 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 1 1 1
6 1.2000000e+01 3.5000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0 0 0
node kox koy kor rdis_x rdis_y rdis_r
1 1 1 1 0.0000000e+00 0.0000000e+00 0.0000000e+00
2 1 1 1 1.6079284e+01 2.3039125e+00 -4.5858390e+00
3 1 1 1 0.0000000e+00 0.0000000e+00 0.0000000e+00
5 1 1 1 0.0000000e+00 0.0000000e+00 0.0000000e+00
elem i j sec
1 1 2 1
2 3 4 1
3 5 6 1
4 2 4 2
5 4 6 2
node dis-x dis-y dis-r
1 0.0000000e+00 0.0000000e+00 0.0000000e+00
2 1.6079284e+01 2.3039125e+00 -4.5858390e+00
3 0.0000000e+00 0.0000000e+00 0.0000000e+00
4 5.6044785e+00 -1.4855500e+00 -6.2687945e-01
5 0.0000000e+00 0.0000000e+00 0.0000000e+00
6 2.6990174e+00 -8.1836249e-01 -5.5363183e-01
elem N_i S_i M_i N_j S_j M_j
1 -6.5826071e-01 2.2541992e+00 5.2550882e+00 6.5826071e-01 -2.2541992e+00 2.6346088e+00
2 4.2444286e-01 1.2615574e+00 2.3868339e+00 -4.2444286e-01 -1.2615574e+00 2.0286170e+00
3 2.3381785e-01 4.8424351e-01 1.0056067e+00 -2.3381785e-01 -4.8424351e-01 6.8924562e-01
4 1.7458009e+00 -6.5826071e-01 -2.6346087e+00 -1.7458009e+00 6.5826071e-01 -1.3149555e+00
5 4.8424351e-01 -2.3381785e-01 -7.1366150e-01 -4.8424351e-01 2.3381785e-01 -6.8924562e-01
n=18 time=0.007 sec
Da die Ausgabeelemente der Analyseergebnisse geändert wurden, wurde auch das Programm zur Erstellung der Querschnittskraftkarte geändert.
py_force.py
import matplotlib.pyplot as plt
import numpy as np
import sys
def calc(ne,node,x,y,d1,d2):
i=node[0,ne]-1
j=node[1,ne]-1
x1=x[i]
y1=y[i]
x2=x[j]
y2=y[j]
al=np.sqrt((x2-x1)**2+(y2-y1)**2)
theta=np.arccos((x2-x1)/al)
x4=x1-d1[ne]*np.sin(theta)
y4=y1+d1[ne]*np.cos(theta)
x3=x2-d2[ne]*np.sin(theta)
y3=y2+d2[ne]*np.cos(theta)
return x1,x2,x3,x4,y1,y2,y3,y4
# Main routine
args = sys.argv
fnameR=args[1] # input data file
f=open(fnameR,'r')
text=f.readline()
text=f.readline()
text=text.strip()
text=text.split()
npoin=int(text[0]) # Number of nodes
nele =int(text[1]) # Number of elements
nsec =int(text[2]) # Number of sections
npfix=int(text[3]) # Number of restricted nodes
nlod =int(text[4]) # Number of loaded nodes
x =np.zeros(npoin,dtype=np.float64) # Coordinates of nodes
y =np.zeros(npoin,dtype=np.float64) # Coordinates of nodes
node=np.zeros([2,nele],dtype=np.int) # Node-element relationship
disx=np.zeros(npoin,dtype=np.float64) # Coordinates of nodes
disy=np.zeros(npoin,dtype=np.float64) # Coordinates of nodes
N1 =np.zeros(nele,dtype=np.float64) # Section force vector
S1 =np.zeros(nele,dtype=np.float64) # Section force vector
M1 =np.zeros(nele,dtype=np.float64) # Section force vector
N2 =np.zeros(nele,dtype=np.float64) # Section force vector
S2 =np.zeros(nele,dtype=np.float64) # Section force vector
M2 =np.zeros(nele,dtype=np.float64) # Section force vector
text=f.readline()
for i in range(0,nsec):
text=f.readline()
text=f.readline()
for i in range(0,npoin):
text=f.readline()
text=text.strip()
text=text.split()
x[i]=float(text[1]) # x-coordinate
y[i]=float(text[2]) # y-coordinate
text=f.readline()
for i in range(0,npfix):
text=f.readline()
text=f.readline()
for i in range(0,nele):
text=f.readline()
text=text.strip()
text=text.split()
node[0,i]=int(text[1]) #node_1
node[1,i]=int(text[2]) #node_2
text=f.readline()
for i in range(0,npoin):
text=f.readline()
text=text.strip()
text=text.split()
disx[i]=float(text[1]) # displacement in x-direction
disy[i]=float(text[2]) # displacement in y-direction
text=f.readline()
for i in range(0,nele):
text=f.readline()
text=text.strip()
text=text.split()
N1[i]=-float(text[1]) # axial force at node-1
S1[i]= float(text[2]) # shear force at node-1
M1[i]= float(text[3]) # moment at node-1
N2[i]= float(text[4]) # axial force at node-2
S2[i]=-float(text[5]) # shear force at node-2
M2[i]=-float(text[6]) # moment at node-2
f.close()
nmax=np.max([np.max(np.abs(N1)),np.max(np.abs(N2))])
smax=np.max([np.max(np.abs(S1)),np.max(np.abs(S2))])
mmax=np.max([np.max(np.abs(M1)),np.max(np.abs(M2))])
dmax=np.max([np.max(np.abs(disx)),np.max(np.abs(disy))])
xmin=-3
xmax=13
ymin=-3
ymax=9
scl_dis=1.0
scl_axi=1.0
scl_she=1.0
scl_mom=2.0
for nnn in range(0,4):
ax=plt.subplot(111)
ax.set_xlim([xmin,xmax])
ax.set_ylim([ymin,ymax])
ax.set_xlabel('x-direction (m)')
ax.set_ylabel('y-direction (m)')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.yaxis.set_ticks_position('left')
ax.xaxis.set_ticks_position('bottom')
aspect = (ymax-ymin)/(xmax-xmin)*(ax.get_xlim()[1] - ax.get_xlim()[0]) / (ax.get_ylim()[1] - ax.get_ylim()[0])
ax.set_aspect(aspect)
if nnn==0:
# displacement
fnameF='fig_dis.png'
ls1='disx_max={0:15.7e}'.format(np.max(disx))
ls2='disx_min={0:15.7e}'.format(np.min(disx))
ls3='disy_max={0:15.7e}'.format(np.max(disy))
ls4='disy_min={0:15.7e}'.format(np.min(disy))
dx=x+disx/dmax*scl_dis
dy=y+disy/dmax*scl_dis
for ne in range(0,nele):
n1=node[0,ne]-1
n2=node[1,ne]-1
ax.plot([x[n1],x[n2]],[y[n1],y[n2]],color='gray',linewidth=0.5)
ax.plot([dx[n1],dx[n2]],[dy[n1],dy[n2]],color='black',linewidth=1)
if nnn==1:
# axial force diagram
fnameF='fig_axi.png'
ls1='N_max={0:15.7e}'.format(np.max([np.max(N1),np.max(N2)]))
ls2='N_min={0:15.7e}'.format(np.min([np.min(N1),np.min(N2)]))
ls3=''
ls4=''
d1=N1/nmax*scl_axi
d2=N2/nmax*scl_axi
for ne in range(0,nele):
x1,x2,x3,x4,y1,y2,y3,y4=calc(ne,node,x,y,d1,d2)
if d1[ne]<=0.0: # compression
ax.fill([x1,x2,x3,x4],[y1,y2,y3,y4],color='black',alpha=0.1)
else: # tension
ax.fill([x1,x2,x3,x4],[y1,y2,y3,y4],color='black',alpha=0.2)
for ne in range(0,nele):
n1=node[0,ne]-1
n2=node[1,ne]-1
plt.plot([x[n1],x[n2]],[y[n1],y[n2]],color='black',linewidth=0.5)
if nnn==2:
# shearing force
fnameF='fig_she.png'
ls1='S_max={0:15.7e}'.format(np.max([np.max(-S1),np.max(-S2)]))
ls2='S_min={0:15.7e}'.format(np.min([np.min(-S1),np.min(-S2)]))
ls3=''
ls4=''
d1=S1/smax*scl_she
d2=S2/smax*scl_she
for ne in range(0,nele):
x1,x2,x3,x4,y1,y2,y3,y4=calc(ne,node,x,y,d1,d2)
ax.fill([x1,x2,x3,x4],[y1,y2,y3,y4],color='black',alpha=0.1)
for ne in range(0,nele):
n1=node[0,ne]-1
n2=node[1,ne]-1
ax.plot([x[n1],x[n2]],[y[n1],y[n2]],color='black',linewidth=0.5)
if nnn==3:
# moment
fnameF='fig_mom.png'
ls1='M_max={0:15.7e}'.format(np.max([np.max(-M1),np.max(-M2)]))
ls2='M_min={0:15.7e}'.format(np.min([np.min(-M1),np.min(-M2)]))
ls3=''
ls4=''
d1=M1/mmax*scl_mom
d2=M2/mmax*scl_mom
for ne in range(0,nele):
x1,x2,x3,x4,y1,y2,y3,y4=calc(ne,node,x,y,d1,d2)
ax.fill([x1,x2,x3,x4],[y1,y2,y3,y4],color='black',alpha=0.1)
for ne in range(0,nele):
n1=node[0,ne]-1
n2=node[1,ne]-1
ax.plot([x[n1],x[n2]],[y[n1],y[n2]],color='black',linewidth=0.5)
ax.plot(xmin,ymin,'.',label=ls1)
ax.plot(xmin,ymin,'.',label=ls2)
ax.plot(xmin,ymin,'.',label=ls3)
ax.plot(xmin,ymin,'.',label=ls4)
ax.legend(loc='upper right',numpoints=1,markerscale=0, frameon=False,prop={'family':'monospace','size':12})
plt.savefig(fnameF, bbox_inches="tight", pad_inches=0.2)
plt.clf()
das ist alles
Recommended Posts