Créez un environnement virtuel dans Conda, rendez PyTorch disponible en Python dans cet environnement virtuel, faites en sorte que PyCall reconnaisse ce Python et appelez-le dans Julia.
La procédure est la suivante.
La méthode d'installation de Conda est omise.
conda create -n my_env python=3.8
conda activate my_env
conda install -c pytorch pytorch
Une fois exécuté, il devient un tel journal.
paalon at paalon-mac in ~
↪ conda create -n my_env python=3.8 (base)
Collecting package metadata (current_repodata.json): done
Solving environment: done
## Package Plan ##
environment location: /Users/paalon/conda/envs/my_env
added / updated specs:
- python=3.8
The following NEW packages will be INSTALLED:
ca-certificates pkgs/main/osx-64::ca-certificates-2020.1.1-0
certifi pkgs/main/osx-64::certifi-2019.11.28-py38_0
libcxx pkgs/main/osx-64::libcxx-4.0.1-hcfea43d_1
libcxxabi pkgs/main/osx-64::libcxxabi-4.0.1-hcfea43d_1
libedit pkgs/main/osx-64::libedit-3.1.20181209-hb402a30_0
libffi pkgs/main/osx-64::libffi-3.2.1-h475c297_4
ncurses pkgs/main/osx-64::ncurses-6.2-h0a44026_0
openssl pkgs/main/osx-64::openssl-1.1.1d-h1de35cc_4
pip pkgs/main/osx-64::pip-20.0.2-py38_1
python pkgs/main/osx-64::python-3.8.1-h359304d_1
readline pkgs/main/osx-64::readline-7.0-h1de35cc_5
setuptools pkgs/main/osx-64::setuptools-45.2.0-py38_0
sqlite pkgs/main/osx-64::sqlite-3.31.1-ha441bb4_0
tk pkgs/main/osx-64::tk-8.6.8-ha441bb4_0
wheel pkgs/main/osx-64::wheel-0.34.2-py38_0
xz pkgs/main/osx-64::xz-5.2.4-h1de35cc_4
zlib pkgs/main/osx-64::zlib-1.2.11-h1de35cc_3
Proceed ([y]/n)? y
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
# $ conda activate my_env
#
# To deactivate an active environment, use
#
# $ conda deactivate
paalon at paalon-mac in ~
↪ conda activate my_env (base)
paalon at paalon-mac in ~
↪ conda install -c pytorch pytorch (my_env)
Collecting package metadata (current_repodata.json): done
Solving environment: done
## Package Plan ##
environment location: /Users/paalon/conda/envs/my_env
added / updated specs:
- pytorch
The following NEW packages will be INSTALLED:
blas pkgs/main/osx-64::blas-1.0-mkl
intel-openmp pkgs/main/osx-64::intel-openmp-2019.4-233
libgfortran pkgs/main/osx-64::libgfortran-3.0.1-h93005f0_2
mkl pkgs/main/osx-64::mkl-2019.4-233
mkl-service pkgs/main/osx-64::mkl-service-2.3.0-py38hfbe908c_0
mkl_fft pkgs/main/osx-64::mkl_fft-1.0.15-py38h5e564d8_0
mkl_random pkgs/main/osx-64::mkl_random-1.1.0-py38h6440ff4_0
ninja pkgs/main/osx-64::ninja-1.9.0-py38h04f5b5a_0
numpy pkgs/main/osx-64::numpy-1.18.1-py38h7241aed_0
numpy-base pkgs/main/osx-64::numpy-base-1.18.1-py38h6575580_1
pytorch pytorch/osx-64::pytorch-1.4.0-py3.8_0
six pkgs/main/osx-64::six-1.14.0-py38_0
Proceed ([y]/n)? y
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
Démarrez Julia.
paalon at paalon-mac in ~
↪ julia (my_env)
_
_ _ _(_)_ | Documentation: https://docs.julialang.org
(_) | (_) (_) |
_ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.
| | | | | | |/ _` | |
| | |_| | | | (_| | | Version 1.3.1 (2019-12-30)
_/ |\__'_|_|_|\__'_| | Official https://julialang.org/ release
|__/ |
Ajoutez PyCall, définissez ʻENV ["PYCALL_JL_RUNTIME_PYTHON"] ʻet ʻENV ["PYTHON"] sur
Sys.which ("python") ʻet compilez pour le rendre disponible.
(v1.3) pkg> add PyCall
Updating registry at `~/.julia/registries/General`
Updating git-repo `https://github.com/JuliaRegistries/General.git`
Resolving package versions...
Updating `~/.julia/environments/v1.3/Project.toml`
[438e738f] + PyCall v1.91.4
Updating `~/.julia/environments/v1.3/Manifest.toml`
[8f4d0f93] + Conda v1.4.1
[438e738f] + PyCall v1.91.4
[81def892] + VersionParsing v1.2.0
julia> ENV["PYCALL_JL_RUNTIME_PYTHON"] = Sys.which("python")
"/Users/paalon/conda/envs/my_env/bin/python3.8"
julia> ENV["PYTHON"] = Sys.which("python")
"/Users/paalon/conda/envs/my_env/bin/python3.8"
(v1.3) pkg> build PyCall
Building Conda ─→ `~/.julia/packages/Conda/3rPhK/deps/build.log`
Building PyCall → `~/.julia/packages/PyCall/zqDXB/deps/build.log`
julia> using PyCall
[ Info: Precompiling PyCall [438e738f-606a-5dbb-bf0a-cddfbfd45ab0]
julia> torch = pyimport("torch")
PyObject <module 'torch' from '/Users/paalon/conda/envs/my_env/lib/python3.8/site-packages/torch/__init__.py'>
julia> x = torch.tensor([1, 2, 3])
PyObject tensor([1, 2, 3])
Ce qui suit ce qui est écrit dans l'exemple du didacticiel officiel
import torch
dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU
# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10
# Create random Tensors to hold input and outputs.
# Setting requires_grad=False indicates that we do not need to compute gradients
# with respect to these Tensors during the backward pass.
x = torch.randn(N, D_in, device=device, dtype=dtype)
y = torch.randn(N, D_out, device=device, dtype=dtype)
# Create random Tensors for weights.
# Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
w1 = torch.randn(D_in, H, device=device, dtype=dtype, requires_grad=True)
w2 = torch.randn(H, D_out, device=device, dtype=dtype, requires_grad=True)
learning_rate = 1e-6
for t in range(500):
# Forward pass: compute predicted y using operations on Tensors; these
# are exactly the same operations we used to compute the forward pass using
# Tensors, but we do not need to keep references to intermediate values since
# we are not implementing the backward pass by hand.
y_pred = x.mm(w1).clamp(min=0).mm(w2)
# Compute and print loss using operations on Tensors.
# Now loss is a Tensor of shape (1,)
# loss.item() gets the scalar value held in the loss.
loss = (y_pred - y).pow(2).sum()
if t % 100 == 99:
print(t, loss.item())
# Use autograd to compute the backward pass. This call will compute the
# gradient of loss with respect to all Tensors with requires_grad=True.
# After this call w1.grad and w2.grad will be Tensors holding the gradient
# of the loss with respect to w1 and w2 respectively.
loss.backward()
# Manually update weights using gradient descent. Wrap in torch.no_grad()
# because weights have requires_grad=True, but we don't need to track this
# in autograd.
# An alternative way is to operate on weight.data and weight.grad.data.
# Recall that tensor.data gives a tensor that shares the storage with
# tensor, but doesn't track history.
# You can also use torch.optim.SGD to achieve this.
with torch.no_grad():
w1 -= learning_rate * w1.grad
w2 -= learning_rate * w2.grad
# Manually zero the gradients after updating weights
w1.grad.zero_()
w2.grad.zero_()
Une fois porté à Julia presque tel quel
ENV["PYCALL_JL_RUNTIME_PYTHON"] = Sys.which("python")
ENV["PYTHON"] = Sys.which("python")
#Lorsque vous modifiez la configuration de python, exécutez la ligne suivante pour construire.
# using Pkg; Pkg.build("PyCall")
using PyCall
torch = pyimport("torch")
dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU
# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10
# Create random Tensors to hold input and outputs.
# Setting requires_grad=False indicates that we do not need to compute gradients
# with respect to these Tensors during the backward pass.
x = torch.randn(N, D_in, device=device, dtype=dtype)
y = torch.randn(N, D_out, device=device, dtype=dtype)
# Create random Tensors for weights.
# Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
w1 = torch.randn(D_in, H, device=device, dtype=dtype, requires_grad=true)
w2 = torch.randn(H, D_out, device=device, dtype=dtype, requires_grad=true)
learning_rate = 1e-6
for t in 1:500
# Forward pass: compute predicted y using operations on Tensors; these
# are exactly the same operations we used to compute the forward pass using
# Tensors, but we do not need to keep references to intermediate values since
# we are not implementing the backward pass by hand.
y_pred = x.mm(w1).clamp(min=0).mm(w2)
# Compute and print loss using operations on Tensors.
# Now loss is a Tensor of shape (1,)
# loss.item() gets the scalar value held in the loss.
loss = (y_pred - y).pow(2).sum()
if t % 100 == 0
println("$(t) $(loss.item())")
end
# Use autograd to compute the backward pass. This call will compute the
# gradient of loss with respect to all Tensors with requires_grad=True.
# After this call w1.grad and w2.grad will be Tensors holding the gradient
# of the loss with respect to w1 and w2 respectively.
loss.backward()
# Manually update weights using gradient descent. Wrap in torch.no_grad()
# because weights have requires_grad=True, but we don't need to track this
# in autograd.
# An alternative way is to operate on weight.data and weight.grad.data.
# Recall that tensor.data gives a tensor that shares the storage with
# tensor, but doesn't track history.
# You can also use torch.optim.SGD to achieve this.
@pywith torch.no_grad() begin
#Si vous le remplacez, il sera remplacé, alors ne l'utilisez pas.
# w1 -= learning_rate * w1.grad
# w2 -= learning_rate * w2.grad
w1.sub_(learning_rate * w1.grad)
w2.sub_(learning_rate * w2.grad)
# Manually zero the gradients after updating weights
w1.grad.zero_()
w2.grad.zero_()
end
end
Sera.
Recommended Posts