Ich habe versucht, ein AutoML-Tool namens AutoGluon zu verwenden. Dieses Mal werde ich den Inhalt des Testens der von AutoGluon erstellten Tabellendaten und Beispielcodes beschreiben.
Es ist ein Open-Source-Tool für automatisches maschinelles Lernen. Wenn Sie Daten in Tabellenform vorbereiten, führt es automatisch ein einfaches Feature-Quantity-Engineering, Modellauswahl, Hyperparameter-Tuning und Ensemble durch.
https://autogluon.mxnet.io/
Ab dem 2. Mai 2020 wurde die Version "0.0.6" veröffentlicht. Für strukturierte Daten scheint es, dass Klassifizierung, Regression, Bildklassifizierung, Objekterkennung und Satzklassifizierung durchgeführt werden können.
https://arxiv.org/pdf/2003.06505.pdf
Die Genauigkeit wird in diesem Dokument bewertet. Für AutoGluon-, TPOT-, H2O-, AutoWEKA-, Auto-Sklearn- und Google AutoML-Tabellen war AutoGluon bei der Berechnung der Vorhersagegenauigkeit unter Verwendung von 50 Arten von Datensätzen am genauesten.
In diesem Artikel wird das Multi-Layer-Stack-Ensembling als Merkmal von Auto Gluon genannt. Einzelheiten entnehmen Sie bitte dem Papier.
Durchführung im Google Colaboratory.
!pip install --upgrade mxnet
!pip install autogluon
Die Installation ist nun abgeschlossen. Zu diesem Zeitpunkt erschienen Fehler und Warnungen in der Pandas-Version usw., aber es war endlich verwendbar.
import autogluon as ag
from autogluon import TabularPrediction as task
Ich habe hier einen Fehler erhalten, aber als ich die Laufzeit neu startete, lief sie ohne Fehler. Verwenden Sie dieselben Daten wie im Lernprogramm.
train_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
train_data = train_data.head(10000)
print(train_data.head())
Die verwendeten Daten wurden auf 10.000 Zeilen begrenzt, um die Ausführungszeit zu verkürzen. Es gibt 15 Spalten, einschließlich Zahlen und Zeichenfolgen, wie unten gezeigt.
Loaded data from: https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv | Columns = 15 / 15 | Rows = 39073 -> 39073
age workclass fnlwgt ... hours-per-week native-country class
0 25 Private 178478 ... 40 United-States <=50K
1 23 State-gov 61743 ... 35 United-States <=50K
2 46 Private 376789 ... 15 United-States <=50K
3 55 ? 200235 ... 50 United-States >50K
4 36 Private 224541 ... 40 El-Salvador <=50K
[5 rows x 15 columns]
Die Zielvariable verwendet auch "Klasse" wie im Tutorial.
label_column = 'class'
print("Summary of class variable: \n", train_data[label_column].describe())
Summary of class variable:
count 10000
unique 2
top <=50K
freq 7568
Name: class, dtype: object
Ich werde tatsächlich ein Modell für maschinelles Lernen erstellen, aber da es nur zu den oben genannten Daten passt, Es ist sehr einfach, ein Modell zu bauen. Versuchen Sie zunächst, das Argument "fit" mit fast den Standardeinstellungen auszuführen.
%%time
dir = 'agModels-predictClass' # specifies folder where to store trained models
predictor = task.fit(train_data=train_data, label=label_column, output_directory=dir)
Es scheint, dass 14 erklärende Variablen numerische Werte sind und der Objekttyp unterschieden wird und ein Merkmalsmengen-Engineering durchgeführt wird. Ich habe nicht gesehen, was im Protokoll passiert ist. Standardmäßig wird die Genauigkeit zur Optimierung und zum frühen Stoppen verwendet. Ich habe ungefähr 10 Modelle überprüft und es dauerte 2 Minuten, um die Montage abzuschließen, also fand ich es sehr schnell. Wie in der API-Referenz (https://autogluon.mxnet.io/api/autogluon.task.html#autogluon.task.TabularPrediction.fit) beschrieben, wird die Optimierung von Hyperparametern standardmäßig nicht durchgeführt. ..
Beginning AutoGluon training ...
AutoGluon will save models to agModels-predictClass/
Train Data Rows: 10000
Train Data Columns: 15
Preprocessing data ...
Here are the first 10 unique label values in your data: [' <=50K' ' >50K']
AutoGluon infers your prediction problem is: binary (because only two unique label-values observed)
If this is wrong, please specify `problem_type` argument in fit() instead (You may specify problem_type as one of: ['binary', 'multiclass', 'regression'])
Selected class <--> label mapping: class 1 = >50K, class 0 = <=50K
Feature Generator processed 10000 data points with 14 features
Original Features:
int features: 6
object features: 8
Generated Features:
int features: 0
All Features:
int features: 6
object features: 8
Data preprocessing and feature engineering runtime = 0.15s ...
AutoGluon will gauge predictive performance using evaluation metric: accuracy
To change this, specify the eval_metric argument of fit()
AutoGluon will early stop models using evaluation metric: accuracy
Fitting model: RandomForestClassifierGini ...
0.842 = Validation accuracy score
2.44s = Training runtime
0.22s = Validation runtime
Fitting model: RandomForestClassifierEntr ...
0.846 = Validation accuracy score
3.04s = Training runtime
0.22s = Validation runtime
Fitting model: ExtraTreesClassifierGini ...
0.83 = Validation accuracy score
1.93s = Training runtime
0.22s = Validation runtime
Fitting model: ExtraTreesClassifierEntr ...
0.836 = Validation accuracy score
2.25s = Training runtime
0.22s = Validation runtime
Fitting model: KNeighborsClassifierUnif ...
0.772 = Validation accuracy score
0.07s = Training runtime
0.11s = Validation runtime
Fitting model: KNeighborsClassifierDist ...
0.748 = Validation accuracy score
0.04s = Training runtime
0.11s = Validation runtime
Fitting model: LightGBMClassifier ...
0.854 = Validation accuracy score
1.21s = Training runtime
0.02s = Validation runtime
Fitting model: CatboostClassifier ...
0.864 = Validation accuracy score
8.85s = Training runtime
0.02s = Validation runtime
Fitting model: NeuralNetClassifier ...
0.854 = Validation accuracy score
93.04s = Training runtime
0.26s = Validation runtime
Fitting model: LightGBMClassifierCustom ...
0.852 = Validation accuracy score
2.2s = Training runtime
0.03s = Validation runtime
Fitting model: weighted_ensemble_k0_l1 ...
0.864 = Validation accuracy score
0.82s = Training runtime
0.0s = Validation runtime
AutoGluon training complete, total runtime = 121.37s ...
CPU times: user 1min 27s, sys: 6.04 s, total: 1min 33s
Wall time: 2min 1s
Sie können eine Zusammenfassung der Modelle sehen, die mit fit_summary
erstellt wurden.
Dieses Mal war das Ergebnis, dass das Ensemble-Modell mit einer Genauigkeit von 0,864 das höchste war.
results = predictor.fit_summary()
*** Summary of fit() ***
Estimated performance of each model:
model score_val fit_time pred_time_val stack_level
10 weighted_ensemble_k0_l1 0.864 0.822482 0.002695 1
7 CatboostClassifier 0.864 8.849893 0.016495 0
8 NeuralNetClassifier 0.854 93.040479 0.263205 0
6 LightGBMClassifier 0.854 1.208874 0.018122 0
9 LightGBMClassifierCustom 0.852 2.201691 0.032273 0
1 RandomForestClassifierEntr 0.846 3.039360 0.218410 0
0 RandomForestClassifierGini 0.842 2.443804 0.224741 0
3 ExtraTreesClassifierEntr 0.836 2.247025 0.215692 0
2 ExtraTreesClassifierGini 0.830 1.930307 0.217770 0
4 KNeighborsClassifierUnif 0.772 0.072491 0.113025 0
5 KNeighborsClassifierDist 0.748 0.035974 0.112589 0
Number of models trained: 11
Types of models trained:
{'CatboostModel', 'LGBModel', 'RFModel', 'KNNModel', 'WeightedEnsembleModel', 'TabularNeuralNetModel'}
Bagging used: False
Stack-ensembling used: False
Hyperparameter-tuning used: False
User-specified hyperparameters:
{'NN': {'num_epochs': 500}, 'GBM': {'num_boost_round': 10000}, 'CAT': {'iterations': 10000}, 'RF': {'n_estimators': 300}, 'XT': {'n_estimators': 300}, 'KNN': {}, 'custom': ['GBM']}
Plot summary of models saved to file: agModels-predictClass/SummaryOfModels.html
*** End of fit() summary ***
Lassen Sie uns nun eine Vorhersage für die Testdaten machen und die Genauigkeit berechnen. Führen Sie die Testdaten auf die gleiche Weise wie im Lernprogramm durch.
test_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
y_test = test_data[label_column] # values to predict
test_data_nolab = test_data.drop(labels=[label_column],axis=1) # delete label column to prove we're not cheating
print(test_data_nolab.head())
Loaded data from: https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv | Columns = 15 / 15 | Rows = 9769 -> 9769
age workclass fnlwgt ... capital-loss hours-per-week native-country
0 31 Private 169085 ... 0 20 United-States
1 17 Self-emp-not-inc 226203 ... 0 45 United-States
2 47 Private 54260 ... 1887 60 United-States
3 21 Private 176262 ... 0 30 United-States
4 17 Private 241185 ... 0 20 United-States
[5 rows x 14 columns]
Wenn Vorhersage und Training separate Skripte sind, laden Sie das Modell mit "Laden". Es gibt auch eine API zur Berechnung der Genauigkeit. Verwenden Sie diese.
predictor = task.load(dir) # unnecessary, just demonstrates how to load previously-trained predictor from file
y_pred = predictor.predict(test_data_nolab)
print("Predictions: ", y_pred)
perf = predictor.evaluate_predictions(y_true=y_test, y_pred=y_pred, auxiliary_metrics=True)
Evaluation: accuracy on test data: 0.8722489507626164
Evaluations on test data:
{
"accuracy": 0.8722489507626164,
"accuracy_score": 0.8722489507626164,
"balanced_accuracy_score": 0.796036984340255,
"matthews_corrcoef": 0.6303973015503467,
"f1_score": 0.8722489507626164
}
Predictions: [' <=50K' ' <=50K' ' >50K' ... ' <=50K' ' <=50K' ' <=50K']
Detailed (per-class) classification report:
{
" <=50K": {
"precision": 0.8965605421301623,
"recall": 0.9410817339954368,
"f1-score": 0.9182818229439498,
"support": 7451
},
" >50K": {
"precision": 0.7746406570841889,
"recall": 0.6509922346850734,
"f1-score": 0.7074542897327709,
"support": 2318
},
"accuracy": 0.8722489507626164,
"macro avg": {
"precision": 0.8356005996071756,
"recall": 0.796036984340255,
"f1-score": 0.8128680563383603,
"support": 9769
},
"weighted avg": {
"precision": 0.8676312460367478,
"recall": 0.8722489507626164,
"f1-score": 0.8682564137942402,
"support": 9769
}
}
Das Ergebnis war eine Genauigkeit von 0,872. Ich fand es praktisch, weil die f1-Punktzahl usw. auch in einer Liste angezeigt werden.
Nun möchte ich versuchen, wie stark sich die Genauigkeit ändert, wenn eine Hyperparameter-Abstimmung durchgeführt wird. Auf den Code wird hier verwiesen.
https://autogluon.mxnet.io/tutorials/tabular_prediction/tabular-indepth.html#
%%time
nn_options = { # specifies non-default hyperparameter values for neural network models
'num_epochs': 10, # number of training epochs (controls training time of NN models)
'learning_rate': ag.space.Real(1e-4, 1e-2, default=5e-4, log=True), # learning rate used in training (real-valued hyperparameter searched on log-scale)
'activation': ag.space.Categorical('relu', 'softrelu', 'tanh'), # activation function used in NN (categorical hyperparameter, default = first entry)
'layers': ag.space.Categorical([100],[1000],[200,100],[300,200,100]),
# Each choice for categorical hyperparameter 'layers' corresponds to list of sizes for each NN layer to use
'dropout_prob': ag.space.Real(0.0, 0.5, default=0.1), # dropout probability (real-valued hyperparameter)
}
gbm_options = { # specifies non-default hyperparameter values for lightGBM gradient boosted trees
'num_boost_round': 100, # number of boosting rounds (controls training time of GBM models)
'num_leaves': ag.space.Int(lower=26, upper=66, default=36), # number of leaves in trees (integer hyperparameter)
}
hyperparameters = {'NN': nn_options, 'GBM': gbm_options} # hyperparameters of each model type
# If one of these keys is missing from hyperparameters dict, then no models of that type are trained.
time_limits = 2*60 # train various models for ~2 min
num_trials = 5 # try at most 3 different hyperparameter configurations for each type of model
search_strategy = 'skopt' # to tune hyperparameters using SKopt Bayesian optimization routine
output_directory = 'agModels-predictOccupation' # folder where to store trained models
dir = 'agModels-predictClass-tuned' # specifies folder where to store trained models
predictor = task.fit(
train_data = train_data, #Trainingsdaten
label = label_column, #Objektive Variable
tuning_data = None, #Überprüfungsdaten für die Optimierung von Hyperparametern
output_directory = dir, #Speicherordnerpfad für Modelle und Dateien der Zwischengeneration
time_limits=time_limits, #Ausführungszeitlimit(Einheit: Sekunden)
num_trials=num_trials, #Maximale Anzahl von Hyperparametersätzen, die versucht werden sollen
hyperparameter_tune=True, #Gibt an, ob Hyperparameter eingestellt werden sollen. Standard ist False
hyperparameters=hyperparameters, #Angeben von Hyperparametern
search_strategy=search_strategy #So suchen Sie nach Hyperparameter-Tuning
)
Da die Anzahl der Hyperparameter, die standardmäßig für jedes Modell eingestellt werden, gering ist, müssen die für jedes Modell einzustellenden Parameter angegeben werden. Weitere Informationen finden Sie in der API-Referenz (https://autogluon.mxnet.io/api/autogluon.task.html). Wie im Beispiel gezeigt, werden diesmal die Parameter von Neural Network und Light GBM angegeben.
Warning: `hyperparameter_tune=True` is currently experimental and may cause the process to hang. Setting `auto_stack=True` instead is recommended to achieve maximum quality models.
Beginning AutoGluon training ... Time limit = 120s
AutoGluon will save models to agModels-predictClass-tuned/
Train Data Rows: 10000
Train Data Columns: 15
Preprocessing data ...
Here are the first 10 unique label values in your data: [' <=50K' ' >50K']
AutoGluon infers your prediction problem is: binary (because only two unique label-values observed)
If this is wrong, please specify `problem_type` argument in fit() instead (You may specify problem_type as one of: ['binary', 'multiclass', 'regression'])
Selected class <--> label mapping: class 1 = >50K, class 0 = <=50K
Feature Generator processed 10000 data points with 14 features
Original Features:
int features: 6
object features: 8
Generated Features:
int features: 0
All Features:
int features: 6
object features: 8
Data preprocessing and feature engineering runtime = 0.12s ...
AutoGluon will gauge predictive performance using evaluation metric: accuracy
To change this, specify the eval_metric argument of fit()
AutoGluon will early stop models using evaluation metric: accuracy
Starting Experiments
Num of Finished Tasks is 0
Num of Pending Tasks is 5
100%
5/5 [01:06<00:00, 13.34s/it]
Finished Task with config: {'feature_fraction': 1.0, 'learning_rate': 0.1, 'min_data_in_leaf': 20, 'num_leaves': 36} and reward: 0.859
Finished Task with config: {'feature_fraction': 0.7568829632019213, 'learning_rate': 0.12424356064985256, 'min_data_in_leaf': 3, 'num_leaves': 55} and reward: 0.858
Finished Task with config: {'feature_fraction': 0.7564494924988235, 'learning_rate': 0.03775715772264416, 'min_data_in_leaf': 8, 'num_leaves': 27} and reward: 0.859
Finished Task with config: {'feature_fraction': 0.9870314769908329, 'learning_rate': 0.1442122206611739, 'min_data_in_leaf': 4, 'num_leaves': 35} and reward: 0.857
Finished Task with config: {'feature_fraction': 0.9339535543959474, 'learning_rate': 0.0050486520525173835, 'min_data_in_leaf': 10, 'num_leaves': 56} and reward: 0.815
0.8645 = Validation accuracy score
1.44s = Training runtime
0.04s = Validation runtime
0.86 = Validation accuracy score
1.54s = Training runtime
0.03s = Validation runtime
0.862 = Validation accuracy score
1.4s = Training runtime
0.04s = Validation runtime
0.8605 = Validation accuracy score
1.33s = Training runtime
0.03s = Validation runtime
0.8155 = Validation accuracy score
1.61s = Training runtime
0.04s = Validation runtime
Starting Experiments
Num of Finished Tasks is 0
Num of Pending Tasks is 5
80%
4/5 [00:57<00:13, 13.95s/it]
Finished Task with config: {'activation.choice': 0, 'dropout_prob': 0.1, 'embedding_size_factor': 1.0, 'layers.choice': 0, 'learning_rate': 0.0005, 'network_type.choice': 0, 'use_batchnorm.choice': 0, 'weight_decay': 1e-06} and reward: 0.8465
Finished Task with config: {'activation.choice': 0, 'dropout_prob': 0.4983419677765833, 'embedding_size_factor': 1.1583623866868233, 'layers.choice': 0, 'learning_rate': 0.0068602771070335935, 'network_type.choice': 0, 'use_batchnorm.choice': 0, 'weight_decay': 0.0004137874852187468} and reward: 0.847
Ran out of time, stopping training early.
Finished Task with config: {'activation.choice': 2, 'dropout_prob': 0.23434709621043653, 'embedding_size_factor': 1.157370849535098, 'layers.choice': 1, 'learning_rate': 0.0024035089234857193, 'network_type.choice': 0, 'use_batchnorm.choice': 0, 'weight_decay': 3.3978628271485844e-09} and reward: 0.806
Please either provide filename or allow plot in get_training_curves
0.848 = Validation accuracy score
23.43s = Training runtime
0.57s = Validation runtime
0.8475 = Validation accuracy score
21.99s = Training runtime
0.31s = Validation runtime
0.806 = Validation accuracy score
9.18s = Training runtime
0.65s = Validation runtime
Fitting model: weighted_ensemble_k0_l1 ... Training model for up to 119.88s of the 51.12s of remaining time.
0.8645 = Validation accuracy score
0.8s = Training runtime
0.0s = Validation runtime
AutoGluon training complete, total runtime = 69.75s ...
CPU times: user 53.8 s, sys: 6.07 s, total: 59.9 s
Wall time: 1min 9s
Das Ergebnis der Anpassung ist wie folgt.
results = predictor.fit_summary()
*** Summary of fit() ***
Estimated performance of each model:
model score_val fit_time pred_time_val stack_level
8 weighted_ensemble_k0_l1 0.8645 0.804953 0.001838 1
0 LightGBMClassifier/trial_15 0.8645 1.438680 0.037270 0
2 LightGBMClassifier/trial_17 0.8620 1.400933 0.039980 0
3 LightGBMClassifier/trial_18 0.8605 1.325390 0.030934 0
1 LightGBMClassifier/trial_16 0.8600 1.536028 0.026618 0
5 NeuralNetClassifier/trial_20 0.8480 23.431652 0.566203 0
6 NeuralNetClassifier/trial_21 0.8475 21.988767 0.310336 0
4 LightGBMClassifier/trial_19 0.8155 1.610676 0.038171 0
7 NeuralNetClassifier/trial_22 0.8060 9.177221 0.650193 0
Number of models trained: 9
Types of models trained:
{'WeightedEnsembleModel', 'LGBModel', 'TabularNeuralNetModel'}
Bagging used: False
Stack-ensembling used: False
Hyperparameter-tuning used: True
User-specified hyperparameters:
{'NN': {'num_epochs': 10, 'learning_rate': Real: lower=0.0001, upper=0.01, 'activation': Categorical['relu', 'softrelu', 'tanh'], 'layers': Categorical[[100], [1000], [200, 100], [300, 200, 100]], 'dropout_prob': Real: lower=0.0, upper=0.5}, 'GBM': {'num_boost_round': 100, 'num_leaves': Int: lower=26, upper=66}}
Plot summary of models saved to file: agModels-predictClass-tuned/SummaryOfModels.html
Plot summary of models saved to file: agModels-predictClass-tuned/LightGBMClassifier_HPOmodelsummary.html
Plot summary of models saved to file: LightGBMClassifier_HPOmodelsummary.html
Plot of HPO performance saved to file: agModels-predictClass-tuned/LightGBMClassifier_HPOperformanceVStrials.png
Berechnen wir die Genauigkeit für die Testdaten.
y_pred = predictor.predict(test_data_nolab)
print("Predictions: ", y_pred)
perf = predictor.evaluate_predictions(y_true=y_test, y_pred=y_pred, auxiliary_metrics=True)
Evaluation: accuracy on test data: 0.8688709182106664
Evaluations on test data:
{
"accuracy": 0.8688709182106664,
"accuracy_score": 0.8688709182106664,
"balanced_accuracy_score": 0.7895131714141826,
"matthews_corrcoef": 0.6195102922288485,
"f1_score": 0.8688709182106664
}
Predictions: [' <=50K' ' <=50K' ' >50K' ... ' <=50K' ' <=50K' ' <=50K']
Detailed (per-class) classification report:
{
" <=50K": {
"precision": 0.8931939841957686,
"recall": 0.9405448933029124,
"f1-score": 0.9162580898215336,
"support": 7451
},
" >50K": {
"precision": 0.7696307852314093,
"recall": 0.6384814495254529,
"f1-score": 0.6979485970290026,
"support": 2318
},
"accuracy": 0.8688709182106664,
"macro avg": {
"precision": 0.8314123847135889,
"recall": 0.7895131714141826,
"f1-score": 0.8071033434252681,
"support": 9769
},
"weighted avg": {
"precision": 0.8638747606110224,
"recall": 0.8688709182106664,
"f1-score": 0.8644573523567893,
"support": 9769
}
Wenn Sie die Option "auto_stack" aktivieren, wird das Multi-Layer-Stack-Ensembling ausgeführt. Am Ende des Beispielcodes finden Sie einen Hinweis zu dieser Option für das automatische Stapeln. Das Besorgniserregendste ist, dass ich die Option zur Optimierung von Hyperparametern nicht aktiviere. Eigentlich dachte ich, ich würde gerne einzelne Modelle zusammenstellen, während ich Hyperparameter abstimme, aber es scheint, dass dies derzeit nicht empfohlen wird.
https://autogluon.mxnet.io/tutorials/tabular_prediction/tabular-indepth.html#maximizing-predictive-performance
%%time
long_time = 30*60 # for quick demonstration only, you should set this to longest time you are willing to wait
dir = 'agModels-predictClass-autostack' # specifies folder where to store trained models
predictor = task.fit(
train_data=train_data,
label=label_column,
auto_stack=True,
output_directory = dir,
time_limits=long_time)
Beginning AutoGluon training ... Time limit = 1800s
AutoGluon will save models to agModels-predictClass-autostack/
Train Data Rows: 10000
Train Data Columns: 15
Preprocessing data ...
Here are the first 10 unique label values in your data: [' <=50K' ' >50K']
AutoGluon infers your prediction problem is: binary (because only two unique label-values observed)
If this is wrong, please specify `problem_type` argument in fit() instead (You may specify problem_type as one of: ['binary', 'multiclass', 'regression'])
Selected class <--> label mapping: class 1 = >50K, class 0 = <=50K
Feature Generator processed 10000 data points with 14 features
Original Features:
int features: 6
object features: 8
Generated Features:
int features: 0
All Features:
int features: 6
object features: 8
Data preprocessing and feature engineering runtime = 0.1s ...
AutoGluon will gauge predictive performance using evaluation metric: accuracy
To change this, specify the eval_metric argument of fit()
AutoGluon will early stop models using evaluation metric: accuracy
Fitting model: RandomForestClassifierGini_STACKER_l0 ... Training model for up to 899.95s of the 1799.89s of remaining time.
0.8571 = Validation accuracy score
20.36s = Training runtime
1.13s = Validation runtime
Fitting model: RandomForestClassifierEntr_STACKER_l0 ... Training model for up to 876.77s of the 1776.72s of remaining time.
0.859 = Validation accuracy score
25.58s = Training runtime
1.34s = Validation runtime
Fitting model: ExtraTreesClassifierGini_STACKER_l0 ... Training model for up to 847.93s of the 1747.87s of remaining time.
0.8486 = Validation accuracy score
16.65s = Training runtime
2.13s = Validation runtime
Fitting model: ExtraTreesClassifierEntr_STACKER_l0 ... Training model for up to 824.45s of the 1724.4s of remaining time.
0.8478 = Validation accuracy score
18.99s = Training runtime
2.14s = Validation runtime
Fitting model: KNeighborsClassifierUnif_STACKER_l0 ... Training model for up to 799.25s of the 1699.2s of remaining time.
0.7694 = Validation accuracy score
0.33s = Training runtime
1.11s = Validation runtime
Fitting model: KNeighborsClassifierDist_STACKER_l0 ... Training model for up to 797.76s of the 1697.7s of remaining time.
0.751 = Validation accuracy score
0.3s = Training runtime
1.11s = Validation runtime
Fitting model: LightGBMClassifier_STACKER_l0 ... Training model for up to 796.29s of the 1696.24s of remaining time.
0.874 = Validation accuracy score
11.52s = Training runtime
0.17s = Validation runtime
Fitting model: CatboostClassifier_STACKER_l0 ... Training model for up to 784.49s of the 1684.44s of remaining time.
0.8735 = Validation accuracy score
54.41s = Training runtime
0.13s = Validation runtime
Fitting model: NeuralNetClassifier_STACKER_l0 ... Training model for up to 729.9s of the 1629.85s of remaining time.
Ran out of time, stopping training early.
Ran out of time, stopping training early.
Ran out of time, stopping training early.
Ran out of time, stopping training early.
0.8591 = Validation accuracy score
641.59s = Training runtime
3.02s = Validation runtime
Fitting model: LightGBMClassifierCustom_STACKER_l0 ... Training model for up to 85.08s of the 985.02s of remaining time.
0.8673 = Validation accuracy score
23.17s = Training runtime
0.28s = Validation runtime
Completed 1/20 k-fold bagging repeats ...
Fitting model: weighted_ensemble_k0_l1 ... Training model for up to 360.0s of the 960.22s of remaining time.
0.874 = Validation accuracy score
3.57s = Training runtime
0.0s = Validation runtime
Fitting model: RandomForestClassifierGini_STACKER_l1 ... Training model for up to 956.64s of the 956.63s of remaining time.
0.873 = Validation accuracy score
32.32s = Training runtime
1.76s = Validation runtime
Fitting model: RandomForestClassifierEntr_STACKER_l1 ... Training model for up to 921.46s of the 921.45s of remaining time.
0.8745 = Validation accuracy score
45.88s = Training runtime
1.36s = Validation runtime
Fitting model: ExtraTreesClassifierGini_STACKER_l1 ... Training model for up to 873.32s of the 873.31s of remaining time.
0.871 = Validation accuracy score
17.69s = Training runtime
2.16s = Validation runtime
Fitting model: ExtraTreesClassifierEntr_STACKER_l1 ... Training model for up to 850.66s of the 850.65s of remaining time.
0.8703 = Validation accuracy score
20.02s = Training runtime
2.15s = Validation runtime
Fitting model: KNeighborsClassifierUnif_STACKER_l1 ... Training model for up to 825.65s of the 825.64s of remaining time.
0.7685 = Validation accuracy score
0.49s = Training runtime
1.13s = Validation runtime
Fitting model: KNeighborsClassifierDist_STACKER_l1 ... Training model for up to 823.94s of the 823.93s of remaining time.
0.7494 = Validation accuracy score
0.41s = Training runtime
1.13s = Validation runtime
Fitting model: LightGBMClassifier_STACKER_l1 ... Training model for up to 822.3s of the 822.3s of remaining time.
0.8783 = Validation accuracy score
12.55s = Training runtime
0.18s = Validation runtime
Fitting model: CatboostClassifier_STACKER_l1 ... Training model for up to 809.49s of the 809.48s of remaining time.
0.878 = Validation accuracy score
46.66s = Training runtime
0.15s = Validation runtime
Fitting model: NeuralNetClassifier_STACKER_l1 ... Training model for up to 762.64s of the 762.63s of remaining time.
Ran out of time, stopping training early.
0.873 = Validation accuracy score
543.08s = Training runtime
3.31s = Validation runtime
Fitting model: LightGBMClassifierCustom_STACKER_l1 ... Training model for up to 216.03s of the 216.03s of remaining time.
0.8741 = Validation accuracy score
25.99s = Training runtime
0.21s = Validation runtime
Completed 1/20 k-fold bagging repeats ...
Fitting model: weighted_ensemble_k0_l2 ... Training model for up to 360.0s of the 189.19s of remaining time.
0.8784 = Validation accuracy score
3.56s = Training runtime
0.0s = Validation runtime
AutoGluon training complete, total runtime = 1614.4s ...
CPU times: user 22min 10s, sys: 1min 8s, total: 23min 19s
Wall time: 26min 54s
In ähnlicher Weise betrug bei der Berechnung der Genauigkeit für die Testdaten die Genauigkeit etwa 0,871.
y_pred = predictor.predict(test_data_nolab)
print("Predictions: ", y_pred)
perf = predictor.evaluate_predictions(y_true=y_test, y_pred=y_pred, auxiliary_metrics=True)
Evaluation: accuracy on test data: 0.8705087521752483
Evaluations on test data:
{
"accuracy": 0.8705087521752483,
"accuracy_score": 0.8705087521752483,
"balanced_accuracy_score": 0.7893980679524981,
"matthews_corrcoef": 0.6232120872465466,
"f1_score": 0.8705087521752483
}
Predictions: [' <=50K' ' <=50K' ' >50K' ... ' <=50K' ' <=50K' ' <=50K']
Detailed (per-class) classification report:
{
" <=50K": {
"precision": 0.8926123381568926,
"recall": 0.9437659374580594,
"f1-score": 0.9174766781916628,
"support": 7451
},
" >50K": {
"precision": 0.7784241142252777,
"recall": 0.635030198446937,
"f1-score": 0.6994535519125684,
"support": 2318
},
"accuracy": 0.8705087521752483,
"macro avg": {
"precision": 0.8355182261910852,
"recall": 0.7893980679524981,
"f1-score": 0.8084651150521156,
"support": 9769
},
"weighted avg": {
"precision": 0.8655176198568123,
"recall": 0.8705087521752483,
"f1-score": 0.8657438901156119,
"support": 9769
}
}
Sie können eine beliebige Metrik für das Argument "eval_metric" von "fit" auswählen. Die Standardeinstellung ist die Genauigkeit für die binäre Klassifizierung.
%%time
dir = 'agModels-predictClass-defaultlogloss' # specifies folder where to store trained models
predictor = task.fit(train_data=train_data, label=label_column, eval_metric='log_loss', output_directory=dir)
Als ich "log_loss" ausprobierte, erhielt ich die folgende Laufzeitwarnung. Es sieht so aus, als ob es für einige Modelle gut funktioniert, aber ich bin mir nicht sicher, ob es am Ende funktioniert ...
/usr/local/lib/python3.6/dist-packages/sklearn/metrics/_classification.py:2295: RuntimeWarning: divide by zero encountered in log
loss = -(transformed_labels * np.log(y_pred)).sum(axis=1)
/usr/local/lib/python3.6/dist-packages/sklearn/metrics/_classification.py:2295: RuntimeWarning: invalid value encountered in multiply
loss = -(transformed_labels * np.log(y_pred)).sum(axis=1)
Eines der Argumente von "fit" war "feature_prune", also habe ich es versucht. Unten ist der Code.
%%time
dir = 'agModels-predictClass-defaultprune' # specifies folder where to store trained models
predictor = task.fit(train_data=train_data, label=label_column, feature_prune=True, output_directory=dir)
Unmittelbar nach der Ausführung wurde die folgende Warnung ausgegeben. Es scheint noch nicht zu funktionieren.
Warning: feature_prune does not currently work, setting to False.
Ich habe den offiziellen Beispielcode und einige Argumentoptionen ausprobiert. Es scheint einige Dinge zu geben, die nicht funktionieren, daher freue ich mich auf zukünftige Updates.
Recommended Posts