Dies ist ein Artikel über das Zeichnen des ARMA-Modells.
Zeichnen Sie ein Diagramm, um visuell zu verstehen, wie der Parameter $ {\ rm ARMA} (p, q) $ das Diagramm ändert. Insgesamt gibt es 49 w Ich habe diesen Artikel aus der schwachen Erwartung heraus geschrieben, dass Sie die Parameter anhand der Grafik unterscheiden können, wenn Sie ihn die ganze Zeit betrachten: grinsen: Nachdem ich die Grafiken nebeneinander betrachtet habe, schreibe ich den Python-Code, der sie generiert hat.
Die Formel für das ARMA-Modell lautet wie folgt. In diesem Artikel zeichnen wir ein Diagramm mit dem Muster von $ p = 0,1,2, \ q = 0,1,2 $ und ebenso vielen Variationen des Vorzeichens jedes Parameters.
y_t = \varepsilon_t + \sum_{i=1}^p \phi_i y_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i} \\
\varepsilon_t \sim N(0,\sigma^2) \\
t = 1, 2, \cdots, T
ARMA(0,0)
y_t = \varepsilon_t
ARMA(0,1)
y_t = \varepsilon_t + \theta_1 \varepsilon_{t-1}
Parameter:
ARMA(0,2)
y_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}
Parameter:
ARMA(1,0)
y_t = \varepsilon_t + \phi_1 y_{t-1}
Parameter:
ARMA(1,1)
y_t = \varepsilon_t + \phi_1 y_{t-1} + \theta_1 \varepsilon_{t-1}
Parameter:
ARMA(1,2)
y_t = \varepsilon_t + \phi_1 y_{t-1} + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}
Parameter:
ARMA(2,0)
y_t = \varepsilon_t + \phi_1 y_{t-1} + \phi_2 y_{t-2}
Parameter:
ARMA(2,1)
y_t = \varepsilon_t + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \theta_1 \varepsilon_{t-1}
Parameter:
ARMA(2,2)
y_t = \varepsilon_t + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}
Parameter:
Ich habe statsmodels
verwendet, die mit Python künstliche ARMA-Daten erstellen können.
import numpy as np
import pandas as pd
import numpy.random as rd
import itertools, sys
%matplotlib inline
import matplotlib.pyplot as plt
from matplotlib import gridspec
plt.style.use('ggplot')
from statsmodels.tsa.arima_process import arma_generate_sample
import statsmodels.api as sm
import statsmodels.tsa.stattools as stt
import statsmodels.graphics.tsaplots as tsaplots
def select_negative(l):
res = []
l = np.array(l)
n = len(l)
res.append(l)
l = np.array(l)
for i in range(n):
for j in itertools.combinations(range(n),i+1):
_l = l.copy()
_l[list(j)] = _l[list(j)] * -1
res.append(_l)
return res
cnt = 0
n = 3
nobs = 500
itrvl = 28
for len_ar in range(n):
for len_ma in range(n):
_ar_params = [.7, .3][:len_ar]
_ma_params = [.7, .3][:len_ma]
_ar_params = select_negative(_ar_params)
_ma_params = select_negative(_ma_params)
for i in _ar_params:
for j in _ma_params:
cnt += 1
ar_params = np.r_[1, -i]
ma_params = np.r_[1, j]
yy = arma_generate_sample(ar_params, ma_params, nobs)
ts = pd.Series(yy, index=pd.date_range('2010/1/1', periods=nobs))
ar_sign = ['+' if val >= 0 else '-' for val in i]
ma_sign = ['+' if val >= 0 else '-' for val in j]
plt.subplots(2, 1, sharex=True, figsize=(15,7))
gs = gridspec.GridSpec(2, 1, height_ratios=[5,2])
ax1 = plt.subplot(gs[0])
ax2 = plt.subplot(gs[1])
# ax1 --------
ts.plot(color="b", alpha=0.4, lw=1, ax=ax1,
title="ARMA({0},{1}). ar:{2},ma:{3}, ar:{4},ma:{5}".format(len_ar, len_ma, i, j, ar_sign, ma_sign))
ax1.set_title(ax1.get_title(), fontsize=16)
ts_mean = pd.rolling_mean(ts,itrvl)
ts_std = pd.rolling_std(ts,itrvl)
upper = ts_mean + ts_std * 1.96
lower = ts_mean - ts_std * 1.96
ts_mean.plot(ax=ax1)
upper.plot(figsize=(15,7), c="purple", alpha=.6, ax=ax1, linestyle='--')
lower.plot(figsize=(15,7), c="purple", alpha=.6, ax=ax1, linestyle='--')
# ax2 --------
tsaplots.plot_acf(ts ,ax=ax2, color="g", lags=300, lw=2)
plt.subplots_adjust(hspace=0)
plt.savefig('./ARMA_fig/ARMA_{}.png'.format(cnt))
plt.clf()
StatsModels : Autoregressive Moving Average (ARMA): Artificial data http://statsmodels.sourceforge.net/stable/examples/notebooks/generated/tsa_arma_1.html
Recommended Posts