** C'était une réinvention de la roue, mais j'ai dû l'écrire moi-même parce que je ne trouvais pas de package facile à utiliser. ** ** Nous prévoyons d'ajouter les fonctions nécessaires dès leur apparition.
S'il y a une demande, gérez-la avec Git.
--Fonctions liées à Geometry_msgs.msg.Transform ()
--transform2homogeneousM
: Transforme le message de transformation en une matrice homogène
--homogeneous2transform
: Reconvertissez la matrice de transformation homogène en un message de transformation
--transform_diff (tf1, tf2)
: affiche la différence entre les deux messages de transformation sous forme de message de transformation
--Fonctions liées à Geometry_msgs.msg.Pose ()
--pose2homogeneousM
: convertit un message de pose en une matrice homogène
--homogeneous2pose
: Reconvertissez la matrice de conversion homogène en un message de pose
--pose_diff (p1, p2)
: affiche la différence entre deux messages de pose sous forme de message de pose
import rospy
import geometry_msg
import tf
# Transform to homogeneous matrix
def transform2homogeneousM(tfobj):
#Il dit Quat à euler sxyz, mais l'ordre de XYZW est bien. N'est-ce pas un peu déroutant?
tfeul= tf.transformations.euler_from_quaternion([tfobj.rotation.x,tfobj.rotation.y,tfobj.rotation.z,tfobj.rotation.w],axes='sxyz')
#Description du montant de la traduction
tftrans = [ tfobj.translation.x,tfobj.translation.y,tfobj.translation.z]
tfobjM = tf.transformations.compose_matrix(angles=tfeul,translate=tftrans)
# return
return tfobjM
def homogeneous2transform(Mat):
scale, shear, angles, trans, persp = tf.transformations.decompose_matrix(Mat)
quat = tf.transformations.quaternion_from_euler(angles[0],angles[1],angles[2])
tfobj = geometry_msgs.msg.Transform()
tfobj.rotation.x = quat[0]
tfobj.rotation.y = quat[1]
tfobj.rotation.z = quat[2]
tfobj.rotation.w = quat[3]
tfobj.translation.x = trans[0]
tfobj.translation.y = trans[1]
tfobj.translation.z = trans[2]
return tfobj
# Transform diff tf1 to 2
def transform_diff(tf1,tf2):
tf1M = transform2homogeneousM(tf1)
tf2M = transform2homogeneousM(tf2)
return homogeneous2transform(tf2M.dot(tf.transformations.inverse_matrix(tf1M)))
#Faire également une version Pose
def pose2homogeneousM(poseobj):
try:
#Il dit Quat à euler sxyz, mais l'ordre de XYZW est bien. N'est-ce pas un peu déroutant?
tfeul= tf.transformations.euler_from_quaternion([poseobj.orientation.x,poseobj.orientation.y,poseobj.orientation.z,poseobj.orientation.w],axes='sxyz')
#Description du montant de la traduction
tftrans = [ poseobj.position.x,poseobj.position.y,poseobj.position.z]
poseobjM = tf.transformations.compose_matrix(angles=tfeul,translate=tftrans)
return poseobjM
except:
print("Input must be a pose object!")
def homogeneous2pose(Mat):
scale, shear, angles, trans, persp = tf.transformations.decompose_matrix(Mat)
quat = tf.transformations.quaternion_from_euler(angles[0],angles[1],angles[2])
poseobj = geometry_msgs.msg.Pose()
poseobj.orientation.x = quat[0]
poseobj.orientation.y = quat[1]
poseobj.orientation.z = quat[2]
poseobj.orientation.w = quat[3]
poseobj.position.x = trans[0]
poseobj.position.y = trans[1]
poseobj.position.z = trans[2]
return poseobj
def pose_diff(p1,p2):
p1M = pose2homogeneousM(p1)
p2M = pose2homogeneousM(p2)
return homogeneous2pose(p2M.dot(tf.transformations.inverse_matrix(p1M)))
Recommended Posts