In the previous article, I posted a program that predicts the behavior of the new coronavirus in the SEIR model. This time, we have made the program into a GUI, so we will share the contents.
`Previous article: I tried to predict the behavior of the new coronavirus with the SEIR model. `` Link: https://qiita.com/kotai2003/items/ed28fb723a335a873061

Currently, many research papers have been published to estimate SEIR parameters from the cases of new coronavirus cases. This time, I will calculate the SEIR model with the parameter estimates published in the paper published on February 16. (Reference 2)
| Parameter | Mainland China (excluding Hubei) | Hubei (excluding Wuhan) | Wuhan | 
|---|---|---|---|
| Population N(million) | 1340 | 45 | 14 | 
| Infection rate[beta] | 1.0 | 1.0 | 1.0 | 
| Latency period (days) | 2 | 2 | 2 | 
| infectious_period (days) | 6.6 | 7.2 | 7.4 | 
| E_0 | 696 | 592 | 318 | 
| I_0 | 652 | 515 | 389 | 
For example, [Social Distance Strategy](https://ja.wikipedia.org/wiki/%E7%A4%BE%E4%BC%9A%E8%B7%9D%E9%9B%A2%E6%88%A6 With% E7% 95% A5), it is possible to simulate how the peak of infected people fluctuates when the infection rate drops from 0.5 to 0.4.
### Case 2: Infection rate 0.4
 The peak of Infections has dropped and the timing has moved to the right.
 With such calculations, it is possible to confirm the effect of the "Purpose of Countermeasures (Basic Concept)" announced on February 23 by the government's Headquarters for Countermeasures against Coronavirus Infectious Diseases.
 
 
main_routine.py
import tkinter as tk
from tkinter import ttk
from tkinter import Menu
from tkinter import messagebox
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from calcSEIR import SEIR_EQ
class Application(tk.Frame):
    def __init__(self,master):
        super().__init__(master)
        self.pack()
        self.master.geometry("1000x600")
        self.master.title("SEIR Epidemic Model Simulator")
        self.create_widgets()
    def create_widgets(self):
        #Canvas Frame
        self.canvas_frame = tk.Frame(self)
        self.canvas_frame.configure(width=600, height=480)
        self.canvas_frame.grid(row=0, column=0)
        self.canvas_frame.grid(padx = 20, pady=20)
        #Label Frame for Input Parameters
        self.frame_param = tk.LabelFrame( self )
        self.frame_param.configure( text=' Input Paramaters ' )
        self.frame_param.grid( row=0, column=1 )
        self.frame_param.grid( padx=20, pady=20 )
        #1. Population
        #Label_population
        self.label_popu = tk.Label( self.frame_param)
        self.label_popu.configure(text ='Population (Million)')
        self.label_popu.grid(row =0, column = 0)
        #Scale population
        self.var_popu = tk.DoubleVar() #scale variable
        self.scale_popu = tk.Scale( self.frame_param)
        self.scale_popu.configure(orient="horizontal")
        self.scale_popu.configure(from_=1, to= 1350)
        self.scale_popu.configure(variable=self.var_popu)
        self.scale_popu.grid(row=0, column=1)
        #2. Infection Rate
        # Label_Infection_Rate
        self.label_IR = tk.Label( self.frame_param )
        self.label_IR.configure( text='Infection Rate' )
        self.label_IR.grid( row=1, column=0 )
        # Scale Infection_Rate
        self.var_IR = tk.DoubleVar()  # scale variable
        self.scale_IR = tk.Scale( self.frame_param )
        self.scale_IR.configure( orient="horizontal" )
        self.scale_IR.configure( from_=0.1, to=2 , resolution=0.1)
        self.scale_IR.configure( variable=self.var_IR )
        self.scale_IR.grid( row=1, column=1 )
        #3. Latency Period
        # Label_
        self.label_LP = tk.Label( self.frame_param )
        self.label_LP.configure( text='Latency Period (days)' )
        self.label_LP.grid( row=2, column=0 )
        # Scale
        self.var_LP = tk.IntVar()  # scale variable
        self.scale_LP = tk.Scale( self.frame_param )
        self.scale_LP.configure( orient="horizontal" )
        self.scale_LP.configure( from_=1, to=14 , resolution=0.1)
        self.scale_LP.configure( variable=self.var_LP )
        self.scale_LP.grid( row=2, column=1 )
        # 3.5 Infection Period
        # Label_
        self.label_IP = tk.Label( self.frame_param )
        self.label_IP.configure( text='Infections Period (days)' )
        self.label_IP.grid( row=3, column=0 )
        # Scale
        self.var_IP = tk.IntVar()  # scale variable
        self.scale_IP = tk.Scale( self.frame_param )
        self.scale_IP.configure( orient="horizontal" )
        self.scale_IP.configure( from_=1, to=14, resolution=0.1 )
        self.scale_IP.configure( variable=self.var_IP )
        self.scale_IP.grid( row=3, column=1 )
        #4 E_0
        self.label_E0 = tk.Label( self.frame_param )
        self.label_E0.configure( text='E(t=0)' )
        self.label_E0.grid( row=4, column=0 )
        #Entry
        self.Entry_E0 = tk.Entry(self.frame_param)
        self.Entry_E0.grid(row=4, column=1)
        self.Entry_E0.insert(tk.END,"696")
        #5 I_0
        self.label_I0 = tk.Label( self.frame_param )
        self.label_I0.configure( text='I(t=0)' )
        self.label_I0.grid( row=5, column=0 )
        # Entry
        self.Entry_I0 = tk.Entry( self.frame_param )
        self.Entry_I0.grid( row=5, column=1 )
        self.Entry_I0.insert( tk.END, "652" )
        #6 R_0
        self.label_R0 = tk.Label( self.frame_param )
        self.label_R0.configure( text='E(t=0)' )
        self.label_R0.grid( row=6, column=0 )
        # Entry
        self.Entry_R0 = tk.Entry( self.frame_param )
        self.Entry_R0.grid( row=6, column=1 )
        self.Entry_R0.insert( tk.END, "0" )
        #7 Time
        self.label_time = tk.Label(self.frame_param)
        self.label_time.configure( text = 'Time [days]')
        self.label_time.grid(row=7, column=0)
        self.var_time = tk.IntVar()  # scale variable
        self.scale_time = tk.Scale( self.frame_param )
        self.scale_time.configure( orient="horizontal" )
        self.scale_time.configure( from_=10, to=500, resolution=1 )
        self.scale_time.configure( variable=self.var_time )
        self.scale_time.grid( row=7, column=1 )
        #Basic Reproduction Number
        # Label Frame result
        self.frame_basicR0 = tk.LabelFrame( self )
        self.frame_basicR0.configure( text=' Basic Reproduction Number ' )
        self.frame_basicR0.grid( row=2, column=1 )
        self.frame_basicR0.grid( padx=20, pady=20 )
        self.label_basicR0 = tk.Label(self.frame_basicR0)
        self.label_basicR0.grid(row = 0, column=0)
        self.label_basicR0.configure(text = '  R0 is ')
        self.msg_basicR0 = tk.Message(self.frame_basicR0)
        self.msg_basicR0.grid(row=0, column=1)
        self.msg_basicR0.configure(text ='')
        # Button
        ##Label Frame for Buttons
        # Label Frame for Input Parameters
        self.frame_button = tk.LabelFrame( self )
        self.frame_button.configure( text=' Operation ' )
        self.frame_button.grid( row=2, column=0 )
        self.frame_param.grid( padx=20, pady=20 )
        #button
        # Plot (Rungekutta. Plot..Canvas..)
        self.button_plot = tk.Button( self.frame_button )
        self.button_plot.configure( text='Calculate & Plot' )
        self.button_plot.grid( column=0, row=1 )
        self.button_plot.configure( command=self.plotCalc )
        self.button_plot.configure(width = 20, height=2)
        # Quit Button
        self.button_quit = tk.Button( self.frame_button )
        self.button_quit.config( text='Quit' )
        self.button_quit.grid( column=2, row=1 )
        self.button_quit.configure( command=self.quit_app )
        self.button_quit.configure( width = 15, height=2 )
## Event Call Back
    def plotCalc(self):
        # parameters
        self.t_max = self.var_time.get()  # days
        self.dt = 0.01
        # initial_state
        self.N_pop = 1e6*self.var_popu.get()
        self.E_0 = int(self.Entry_E0.get())
        self.I_0 = int(self.Entry_I0.get())
        self.R_0 = int(self.Entry_R0.get())
        self.S_0 = self.N_pop - (self.E_0 + self.I_0 + self.R_0)
        self.ini_state = [self.S_0, self.E_0, self.I_0, self.R_0]  # [S[0],E,[0], I[0], R[0]]
        #Infection rate
        self.beta_const = self.var_IR.get()  #Infection rate
        #Rate of getting infection after exposure
        self.epsilon_const = 1 / self.var_LP.get()
        #Recovery rate and quarantine rate
        self.gamma_const = 1 / self.var_IP.get()
        #Basic Reproduction number in SEIR model
        self.basicR0 = self.beta_const/self.gamma_const +self.beta_const/self.epsilon_const
        self.msg_basicR0.configure( text=str(self.basicR0) )
        #https://www.fields.utoronto.ca/programs/scientific/10-11/drugresistance/emergence/fred1.pdf
        # numerical integration
        self.times = np.arange( 0, self.t_max, self.dt )
        self.args = (self.beta_const, self.epsilon_const, self.gamma_const, self.N_pop)
        # Numerical Solution using scipy.integrate
        # Solver SEIR model
        self.result = odeint(SEIR_EQ, self.ini_state, self.times, self.args )
        ## Plotting
        # Generate Figure instance
        self.fig = plt.Figure()
        #Generate Axe instance
        #ax1
        self.ax1 = self.fig.add_subplot(111)
        self.ax1.plot(self.times, self.result)
        self.ax1.set_title('SEIR Epidemic model')
        self.ax1.set_xlabel('time [days]')
        self.ax1.set_ylabel('population [persons]')
        self.ax1.legend(['Susceptible', 'Exposed', 'Infectious', 'Removed'])
        self.ax1.grid()
        #Link to Axe instance to Canvas
        #Then show Canvas onto canvas_Frame
        self.canvas = FigureCanvasTkAgg( self.fig, self.canvas_frame )
        self.canvas.draw()
        self.canvas.get_tk_widget().grid(column=0, row=0)
    def quit_app(self):
        self.Msgbox = tk.messagebox.askquestion( "Exit Applictaion", "Are you sure?", icon="warning" )
        if self.Msgbox == "yes":
            self.master.destroy()
        else:
            tk.messagebox.showinfo( "Return", "you will now return to application screen" )
def main():
    root = tk.Tk()
    app = Application(master=root)#Inherit
    app.mainloop()
if __name__ == "__main__":
    main()
calcSEIR.py
# Define differential equation of SEIR model
'''
dS/dt = -beta * S * I / N
dE/dt = beta* S * I / N - epsilon * E
dI/dt = epsilon * E - gamma * I
dR/dt = gamma * I
[v[0], v[1], v[2], v[3]]=[S, E, I, R]
dv[0]/dt = -beta * v[0] * v[2] / N
dv[1]/dt = beta * v[0] * v[2] / N - epsilon * v[1]
dv[2]/dt = epsilon * v[1] - gamma * v[2]
dv[3]/dt = gamma * v[2]
'''
def SEIR_EQ(v, t, beta, epsilon, gamma, N ):
    return [-beta * v[0] * v[2] / N ,beta * v[0] * v[2] / N - epsilon * v[1],
            epsilon * v[1] - gamma * v[2],gamma * v[2]]