Let's go.
python
%pylab inline
from PIL import Image,ImageDraw,ImageFont
python
#Load image
img = Image.open('in-image/lena_std.tif')
#File information display
print('size    : ', img.size)
print('format  : ', img.format) 
print('mode    : ', img.mode) 
print('palette : ', img.palette) 
print('info    : ', img.info) 
pl_img = np.array(img) ; plt.imshow( pl_img ) #display
#Convert the file format and save (automatically determine by looking at the extension)
img.save('work-image/lena.jpg') 

python
img = Image.open('work-image/lena.jpg')
#File information display
print('size    : ', img.size)
print('format  : ', img.format) 
print('mode    : ', img.mode) 
print('palette : ', img.palette) 
print('info    : ', img.info) 
# 200*Resize to 200
resize_img = img.resize((200,200),Image.ANTIALIAS)
#File information display
print('size    : ', resize_img.size)
print('format  : ', resize_img.format) 
print('mode    : ', resize_img.mode) 
print('palette : ', resize_img.palette) 
print('info    : ', resize_img.info) 
#Save the converted data
resize_img.save('work-image/resize_lena.jpg') 
pl_img = np.array(resize_img) ; plt.imshow( pl_img ) #display

python
#The original data (img) has already been read, so trim it
trim_img = img.crop((64,64,448,448))
pl_img = np.array(trim_img) ; plt.imshow( pl_img ) #display
#Save trimmed data
trim_img.save('work-image/trim_lena.jpg') 

↓ I gave a notebook to nbviewer (I mean, this is the main one) nbviewer.ipython.org/github/suto3/git-public/blob/master/python/notebook/Pillow-workflow02.ipynb
↓ Click here for the working environment Pillow environment construction --Virtual environment by virtualenv, interactive environment by iPython --Qiita
Try using Pillow on iPython (Part 1) --Qiita
Try Pillow on iPython (Part 3) --Qiita
No, iPython is easy w.
Recommended Posts