[PYTHON] Project Euler 8

"Maximum product in number sequence" † Take 13 consecutive numbers from the following 1000 digits and calculate their product. What is the value of the largest of such products?

Note: This issue has been recently updated. Please check if your parameters are correct. (5 → 13)

(Numbers omitted)

If the EX 6-digit number is 123789, there are two ways, 1 * 2 * 3 * 7 * 8 and 2 * 3 * 7 * 8 * 9, and the latter 2 * 3 * 7 * 8 * 9 = 3024 is the maximum product. Become. http://odz.sakura.ne.jp/projecteuler/index.php?cmd=read&page=Problem%208

For the time being, I wrote the code as I came up with it.

def main():
  target = '73167176531330624919225119674426574742355349194934'\
         + '96983520312774506326239578318016984801869478851843'\
         + '85861560789112949495459501737958331952853208805511'\
         + '12540698747158523863050715693290963295227443043557'\
         + '66896648950445244523161731856403098711121722383113'\
         + '62229893423380308135336276614282806444486645238749'\
         + '30358907296290491560440772390713810515859307960866'\
         + '70172427121883998797908792274921901699720888093776'\
         + '65727333001053367881220235421809751254540594752243'\
         + '52584907711670556013604839586446706324415722155397'\
         + '53697817977846174064955149290862569321978468622482'\
         + '83972241375657056057490261407972968652414535100474'\
         + '82166370484403199890008895243450658541227588666881'\
         + '16427171479924442928230863465674813919123162824586'\
         + '17866458359124566529476545682848912883142607690042'\
         + '24219022671055626321111109370544217506941658960408'\
         + '07198403850962455444362981230987879927244284909188'\
         + '84580156166097919133875499200524063689912560717606'\
         + '05886116467109405077541002256983155200055935729725'\
         + '71636269561882670428252483600823257530420752963450'
         
  max = 0
  leng = 13
  for i in range(len(target)-leng):
    j = 1
    for x in target[i:i+leng]:
      j *= int(x)
    if j > max:
      max = j
    
  #print max

Recommended Posts

Project Euler 37
Project Euler 7
Project Euler 47
Project Euler 31
Project Euler 4
Project Euler 38
Project Euler 17
Project Euler 26
Project Euler 8
Project Euler 23
Project Euler 22
Project Euler 19
Project Euler 50
Project Euler 42
Project Euler 33
Project Euler 32
Project Euler 43
Project Euler 35
Project Euler 36
Project Euler 24
Project Euler 46
Project Euler 48
Project Euler 45
Project Euler 6
Project Euler 44
Project Euler 39
Project Euler 40
Project Euler 49
Project Euler 29
Project Euler 27
Project Euler 41
Project Euler 18
Project Euler 13
Project Euler 30
Project Euler 16
Project Euler 14
Project Euler 34
Project Euler 25
[Project Euler] problem1
Project Euler15 "Lattice Path"
Project Euler 2 Acceleration 2.21 Save microseconds.
Project Euler Original Method Group 1
What is Project Euler 3 Acceleration?
Functional programming in Python Project Euler 1
Project Euler 10 "Sum of Prime Numbers"
[Note] Project Euler in Python (Problem 1-22)
Functional programming in Python Project Euler 3
Project Euler # 5 "Minimum Multiples" in Python
Project Euler 4 Attempt to speed up
Functional programming in Python Project Euler 2
Project Euler 11 "Maximum product in grid"
Project Euler # 15 "Lattice Path" in Python
Project Euler # 4 "Maximum Palindrome" in Python
Project Euler 9 Retention of calculation results
Project Euler # 3 "Maximum Prime Factors" in Python
Project Euler # 7 "1000 1st prime number" in Python
Project Euler # 16 "Sum of Powers" in Python
Project Euler # 9 "Special Pythagorean Triple" in Python
Project Euler # 14 "Longest Collatz Sequence" in Python
I wrote Project Euler 1 in one liner.
Project Euler # 2 "Even Fibonacci Numbers" in Python