[PYTHON] Project Euler 26

problem

A unit fraction is a fraction whose numerator is 1. The unit fraction whose denominator is 2 to 10 is expressed in decimal as follows.

1/2 = 0.5 1/3 = 0.(3) 1/4 = 0.25 1/5 = 0.2 1/6 = 0.1(6) 1/7 = 0.(142857) 1/8 = 0.125 1/9 = 0.(1) 1/10 = 0.1

0.1 (6) is the number 0.166666 ... and has a one-digit recurring node. A 1/7 recurring node has six digits.

Find d such that the recurring node of the decimal part is the longest in 1 / d where d <1000. http://odz.sakura.ne.jp/projecteuler/index.php?cmd=read&page=Problem%2026

Answer

(1) The length of the recurring node in the decimal part of 1 / d is the point where d is the minimum n that divides 10 ^ n-1. (2) Factors such as 2, 5 do not contribute to the length of the circular theory of the decimal part. I wrote the following code on the premise of the above two points (see supplement). Since the three points of get_prime_boolean and get_prime_listm get_primes are stored in mymath, you may refer to them.

code

def get_prime_boolean(max):
    bool = [False,False]+[True]*(max-1)
    bool[4::2] = [False] * (len(bool[4::2]))
    p = 3
    p_max = int(math.sqrt(max))+1
    while p<=p_max:
        if bool[p]:
          bool[p*2::p] = [False] * (len(bool[p*2::p]))
        p+=2
    return bool

def get_prime_list(bool):
    length = len(bool)
    return [i for i in range(2,length) if bool[i]]

def get_primes(max):
    bool = get_prime_boolean(max)
    list = get_prime_list(bool)
    return {'bool':bool,'list':list}

def pe26():
  MAX = 1000
  seq = range(MAX)
  ans = seq[3::10] + seq[7::10] + seq[9::10] + seq[11::10]
  t = 9
  while len(ans) > 1:
    i = 0
    while i < len(ans):
      if (t%ans[i]) == 0:
        ans.pop(i)
      else:
        i += 1
    t = t*10 + 9
  print ans[0]
  import math
  print math.log(t,10)

pe26()

Recommended Posts

Project Euler 7
Project Euler 47
Project Euler 31
Project Euler 38
Project Euler 17
Project Euler 26
Project Euler 8
Project Euler 23
Project Euler 22
Project Euler 19
Project Euler 50
Project Euler 42
Project Euler 33
Project Euler 32
Project Euler 43
Project Euler 35
Project Euler 36
Project Euler 24
Project Euler 46
Project Euler 48
Project Euler 45
Project Euler 6
Project Euler 44
Project Euler 39
Project Euler 40
Project Euler 49
Project Euler 29
Project Euler 27
Project Euler 41
Project Euler 18
Project Euler 13
Project Euler 30
Project Euler 16
Project Euler 14
Project Euler 34
Project Euler 25
[Project Euler] problem1
Project Euler15 "Lattice Path"
Project Euler Original Method Group 1
What is Project Euler 3 Acceleration?
[Note] Project Euler in Python (Problem 1-22)
Functional programming in Python Project Euler 3
Project Euler # 5 "Minimum Multiples" in Python
Project Euler 4 Attempt to speed up
Functional programming in Python Project Euler 2
Project Euler 11 "Maximum product in grid"
Project Euler # 15 "Lattice Path" in Python
Project Euler # 4 "Maximum Palindrome" in Python
Project Euler 9 Retention of calculation results
Project Euler # 3 "Maximum Prime Factors" in Python
Project Euler # 11 "Maximum Product in Grid" in Python
Project Euler # 7 "1000 1st prime number" in Python
Project Euler # 16 "Sum of Powers" in Python
Project Euler # 9 "Special Pythagorean Triple" in Python
Project Euler # 14 "Longest Collatz Sequence" in Python
I wrote Project Euler 1 in one liner.
Project Euler # 2 "Even Fibonacci Numbers" in Python
Project Euler # 17 "Number of Characters" in Python
Project Euler # 1 "Multiples of 3 and 5" in Python
Project Euler # 8 "Maximum Product in Number String" in Python
Project Euler # 10 "sum of prime numbers" in Python