Einige der OpenCV-Tutorials haben alte Spezifikationen, daher werde ich den Code für diejenigen bereitstellen, die ihn vorerst zum Laufen bringen möchten.
import numpy as np
import cv2
from google.colab.patches import cv2_imshow
img1 = cv2.imread('box.png', 0)
img2 = cv2.imread('box_in_scene.png', 0)
akaze = cv2.AKAZE_create()
kp1, des1 = akaze.detectAndCompute(img1, None)
kp2, des2 = akaze.detectAndCompute(img2, None)
# create BFMatcher object
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=False)
#bf = cv2.BFMatcher()
matches = bf.knnMatch(des1, des2, k=2)
# Need to draw only good matches, so create a mask
matchesMask = [[0,0] for i in range(len(matches))]
# Apply ratio test
good = []
good2 = []
for m,n in matches:
if m.distance < 0.75*n.distance:
good.append([m])
good2.append(m)
# cv2.drawMatchesKnn expects list of lists as matches.
img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=2)
cv2_imshow(img3)
MIN_MATCH_COUNT =10
if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good2 ]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good2 ]).reshape(-1,1,2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
matchesMask = mask.ravel().tolist()
h,w = img1.shape
pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
dst = cv2.perspectiveTransform(pts,M)
img3 = cv2.polylines(img2,[np.int32(dst)],True,255,3, cv2.LINE_AA)
cv2_imshow(img3)
img4 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=2)
cv2_imshow(img4)
Recommended Posts