Typisches Problem und Ausführungsmethode
Wenn das Gewicht der Seite $ e $ im ungerichteten Graphen $ G = (V, E) $ $ w (e) $ ist, ist die Summe der Gewichte der Seite auf dem gesamten Baum $ T = (V, E_T) $ $ Suchen Sie den gesamten Baum, der \ sum_ {e \ in E_T} {w (e)} $ minimiert.
usage
Signature: nx.minimum_spanning_tree(G, weight='weight')
Docstring:
Return a minimum spanning tree or forest of an undirected
weighted graph.
A minimum spanning tree is a subgraph of the graph (a tree) with
the minimum sum of edge weights.
python
#CSV-Daten
import pandas as pd, networkx as nx, matplotlib.pyplot as plt
from ortoolpy import graph_from_table, networkx_draw
tbn = pd.read_csv('data/node0.csv')
tbe = pd.read_csv('data/edge0.csv')
g = graph_from_table(tbn, tbe)[0]
t = nx.minimum_spanning_tree(g)
pos = networkx_draw(g)
nx.draw_networkx_edges(t, pos, width=3)
plt.show()
print(t.edges())
Ergebnis
[(0, 1), (0, 3), (0, 4), (2, 3), (4, 5)]
python
# pandas.DataFrame
from ortoolpy.optimization import MinimumSpanningTree
MinimumSpanningTree('data/edge0.csv')
node1 | node2 | capacity | weight | |
---|---|---|---|---|
0 | 0 | 1 | 2 | 1 |
1 | 0 | 3 | 2 | 2 |
2 | 0 | 4 | 2 | 2 |
3 | 2 | 3 | 2 | 3 |
4 | 4 | 5 | 2 | 1 |
python
#Zufällige Daten
import math, networkx as nx, matplotlib.pyplot as plt
from ortoolpy import networkx_draw
g = nx.random_graphs.fast_gnp_random_graph(10, 0.3, 1)
pos = nx.spring_layout(g)
for i, j in g.edges():
g.adj[i][j]['weight'] = math.sqrt(sum((pos[i] - pos[j])**2))
t = nx.minimum_spanning_tree(g)
pos = networkx_draw(g, nx.spring_layout(g))
nx.draw_networkx_edges(t, pos, width=3)
plt.show()
Recommended Posts