Lien vers la table des matières
table des matières Chapitre 1: Modèle de régression linéaire [Chapitre 2: Modèle de régression non linéaire] (https://qiita.com/matsukura04583/items/baa3f2269537036abc57) [Chapitre 3: Modèle de régression logistique] (https://qiita.com/matsukura04583/items/0fb73183e4a7a6f06aa5) [Chapitre 4: Analyse des composants principaux] (https://qiita.com/matsukura04583/items/b3b5d2d22189afc9c81c) [Chapitre 5: Algorithme 1 (méthode de voisinage k (kNN))] (https://qiita.com/matsukura04583/items/543719b44159322221ed) [Chapitre 6: Algorithme 2 (k-means)] (https://qiita.com/matsukura04583/items/050c98c7bb1c9e91be71) [Chapitre 7: Support Vector Machine] (https://qiita.com/matsukura04583/items/6b718642bcbf97ae2ca8)
1.Problème de réglage->2.Sélection des données->3.Prétraitement des données->4.Sélection du modèle d'apprentissage automatique
->5.Apprentissage de modèle(Estimation des paramètres)->6.Évaluation du modèle
Classification d'apprentissage | tâche | Modèle d'apprentissage automatique | Des paramètres Problème deviner |
modèle Sélection / évaluation |
---|---|---|---|---|
Apprendre avec un enseignant | Prévoir | Régression linéaire / régression non linéaire | Méthode du carré minimum / maximisation de la vraisemblance | Méthode d'exclusion / méthode de vérification d'intersection |
Comme ci-dessus | Classification | Retour logistique | Maximiser la probabilité(Méthode la plus probable) | Comme ci-dessus |
Comme ci-dessus | Comme ci-dessus | Le plus proche / K-algorithme | Le plus proche / K-algorithme | Comme ci-dessus |
Comme ci-dessus | Comme ci-dessus | Machine de vecteur de soutien | Maximisation de la marge | Comme ci-dessus |
Apprendre sans professeur | Clustering | K-signifie algorithme | K-signifie algorithme- | Aucun |
Comme ci-dessus | Réduction de dimension | Analyse des composants principaux | Maximiser la distribution | Aucun |
article | La description |
---|---|
Classification d'apprentissage | Apprendre avec un enseignant |
tâche | Prévoir |
Modèle d'apprentissage automatique | Régression linéaire~~Régression non linéaire~~ |
Des paramètres Problème deviner |
Méthode du carré minimum / maximisation de la vraisemblance |
Sélection / évaluation du modèle | Méthode Holdout Méthode de vérification croisée |
{(x_i,y_i):i=1,・ ・ ・,n}
w=(w_1,w_2,・ ・ ・,w_m)^T \in R^m
\hat{y}=w^Tx+w_0 = \sum_{j=1}^{m} w_jx_j+w_0
Un modèle de régression linéaire est un modèle qui prédit la valeur de la variable objective à partir de la valeur de la variable explicative à l'aide de l'équation de régression suivante.
En particulier, une variable explicative est appelée «analyse de régression unique» et deux variables explicatives ou plus sont appelées «analyse de régression multiple».
#depuis le nom du module importer le nom de la classe (ou le nom de la fonction ou le nom de la variable)
from sklearn.datasets import load_boston
from pandas import DataFrame
import numpy as np
#Données de Boston"boston"Importer dans une instance appelée
boston = load_boston()
#Vérifiez les données importées(data / target / feature_names / DESCR)
print(boston)
Description des colonnes typiques
Afficher le contenu de boston
résultat
{'data': array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+02,
4.9800e+00],
[2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,
9.1400e+00],
[2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,
4.0300e+00],
...,
[6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
5.6400e+00],
[1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,
6.4800e+00],
[4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
7.8800e+00]]), 'target': array([24. , 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15. ,
18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,
15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,
13.1, 13.5, 18.9, 20. , 21. , 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,
21.2, 19.3, 20. , 16.6, 14.4, 19.4, 19.7, 20.5, 25. , 23.4, 18.9,
35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16. , 22.2, 25. , 33. , 23.5,
19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,
20.8, 21.2, 20.3, 28. , 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,
23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,
33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,
21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22. ,
20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18. , 14.3, 19.2, 19.6,
23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,
15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,
17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,
25. , 50. , 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,
23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50. ,
32. , 29.8, 34.9, 37. , 30.5, 36.4, 31.1, 29.1, 50. , 33.3, 30.3,
34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50. , 22.6, 24.4, 22.5, 24.4,
20. , 21.7, 19.3, 22.4, 28.1, 23.7, 25. , 23.3, 28.7, 21.5, 23. ,
26.7, 21.7, 27.5, 30.1, 44.8, 50. , 37.6, 31.6, 46.7, 31.5, 24.3,
31.7, 41.7, 48.3, 29. , 24. , 25.1, 31.5, 23.7, 23.3, 22. , 20.1,
22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,
42.8, 21.9, 20.9, 44. , 50. , 36. , 30.1, 33.8, 43.1, 48.8, 31. ,
36.5, 22.8, 30.7, 50. , 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,
32. , 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46. , 50. , 32.2, 22. ,
20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,
20.3, 22.5, 29. , 24.8, 22. , 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,
22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,
21. , 23.8, 23.1, 20.4, 18.5, 25. , 24.6, 23. , 22.2, 19.3, 22.6,
19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19. , 18.7,
32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,
18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25. , 19.9, 20.8,
16.8, 21.9, 27.5, 21.9, 23.1, 50. , 50. , 50. , 50. , 50. , 13.8,
13.8, 15. , 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8,
7.2, 10.5, 7.4, 10.2, 11.5, 15.1, 23.2, 9.7, 13.8, 12.7, 13.1,
12.5, 8.5, 5. , 6.3, 5.6, 7.2, 12.1, 8.3, 8.5, 5. , 11.9,
27.9, 17.2, 27.5, 15. , 17.2, 17.9, 16.3, 7. , 7.2, 7.5, 10.4,
8.8, 8.4, 16.7, 14.2, 20.8, 13.4, 11.7, 8.3, 10.2, 10.9, 11. ,
9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4, 9.6, 8.7, 8.4, 12.8,
10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13. , 13.4,
15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20. , 16.4, 17.7,
19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,
29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,
20.6, 21.2, 19.1, 20.6, 15.2, 7. , 8.1, 13.6, 20.1, 21.8, 24.5,
23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9]), 'feature_names': array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',
'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7'), 'DESCR': ".. _boston_dataset:\n\nBoston house prices dataset\n---------------------------\n\n**Data Set Characteristics:** \n\n :Number of Instances: 506 \n\n :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.\n\n :Attribute Information (in order):\n - CRIM per capita crime rate by town\n - ZN proportion of residential land zoned for lots over 25,000 sq.ft.\n - INDUS proportion of non-retail business acres per town\n - CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)\n - NOX nitric oxides concentration (parts per 10 million)\n - RM average number of rooms per dwelling\n - AGE proportion of owner-occupied units built prior to 1940\n - DIS weighted distances to five Boston employment centres\n - RAD index of accessibility to radial highways\n - TAX full-value property-tax rate per $10,000\n - PTRATIO pupil-teacher ratio by town\n - B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town\n - LSTAT % lower status of the population\n - MEDV Median value of owner-occupied homes in $1000's\n\n :Missing Attribute Values: None\n\n :Creator: Harrison, D. and Rubinfeld, D.L.\n\nThis is a copy of UCI ML housing dataset.\nhttps://archive.ics.uci.edu/ml/machine-learning-databases/housing/\n\n\nThis dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.\n\nThe Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic\nprices and the demand for clean air', J. Environ. Economics & Management,\nvol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics\n...', Wiley, 1980. N.B. Various transformations are used in the table on\npages 244-261 of the latter.\n\nThe Boston house-price data has been used in many machine learning papers that address regression\nproblems. \n \n.. topic:: References\n\n - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.\n - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.\n", 'filename': '/usr/local/lib/python3.6/dist-packages/sklearn/datasets/data/boston_house_prices.csv'}
#Vérifiez le contenu de la variable DESCR
print(boston['DESCR'])
résultat
.. _boston_dataset:
Boston house prices dataset
---------------------------
**Data Set Characteristics:**
:Number of Instances: 506
:Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.
:Attribute Information (in order):
- CRIM per capita crime rate by town
- ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- INDUS proportion of non-retail business acres per town
- CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- NOX nitric oxides concentration (parts per 10 million)
- RM average number of rooms per dwelling
- AGE proportion of owner-occupied units built prior to 1940
- DIS weighted distances to five Boston employment centres
- RAD index of accessibility to radial highways
- TAX full-value property-tax rate per $10,000
- PTRATIO pupil-teacher ratio by town
- B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
- LSTAT % lower status of the population
- MEDV Median value of owner-occupied homes in $1000's
:Missing Attribute Values: None
:Creator: Harrison, D. and Rubinfeld, D.L.
This is a copy of UCI ML housing dataset.
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.
The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
prices and the demand for clean air', J. Environ. Economics & Management,
vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics
...', Wiley, 1980. N.B. Various transformations are used in the table on
pages 244-261 of the latter.
The Boston house-price data has been used in many machine learning papers that address regression
problems.
.. topic:: References
- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
- Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.
#feature_Vérifiez le contenu de la variable names
#Nom de colonne
print(boston['feature_names'])
résultat
['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'
'B' 'LSTAT']
#variable de données(Variable explicative)Vérifiez le contenu
print(boston['data'])
résultat
[[6.3200e-03 1.8000e+01 2.3100e+00 ... 1.5300e+01 3.9690e+02 4.9800e+00]
[2.7310e-02 0.0000e+00 7.0700e+00 ... 1.7800e+01 3.9690e+02 9.1400e+00]
[2.7290e-02 0.0000e+00 7.0700e+00 ... 1.7800e+01 3.9283e+02 4.0300e+00]
...
[6.0760e-02 0.0000e+00 1.1930e+01 ... 2.1000e+01 3.9690e+02 5.6400e+00]
[1.0959e-01 0.0000e+00 1.1930e+01 ... 2.1000e+01 3.9345e+02 6.4800e+00]
[4.7410e-02 0.0000e+00 1.1930e+01 ... 2.1000e+01 3.9690e+02 7.8800e+00]]
#variable cible(Variable objective)Vérifiez le contenu
print(boston['target'])
résultat
[24. 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 15. 18.9 21.7 20.4
18.2 19.9 23.1 17.5 20.2 18.2 13.6 19.6 15.2 14.5 15.6 13.9 16.6 14.8
18.4 21. 12.7 14.5 13.2 13.1 13.5 18.9 20. 21. 24.7 30.8 34.9 26.6
25.3 24.7 21.2 19.3 20. 16.6 14.4 19.4 19.7 20.5 25. 23.4 18.9 35.4
24.7 31.6 23.3 19.6 18.7 16. 22.2 25. 33. 23.5 19.4 22. 17.4 20.9
24.2 21.7 22.8 23.4 24.1 21.4 20. 20.8 21.2 20.3 28. 23.9 24.8 22.9
23.9 26.6 22.5 22.2 23.6 28.7 22.6 22. 22.9 25. 20.6 28.4 21.4 38.7
43.8 33.2 27.5 26.5 18.6 19.3 20.1 19.5 19.5 20.4 19.8 19.4 21.7 22.8
18.8 18.7 18.5 18.3 21.2 19.2 20.4 19.3 22. 20.3 20.5 17.3 18.8 21.4
15.7 16.2 18. 14.3 19.2 19.6 23. 18.4 15.6 18.1 17.4 17.1 13.3 17.8
14. 14.4 13.4 15.6 11.8 13.8 15.6 14.6 17.8 15.4 21.5 19.6 15.3 19.4
17. 15.6 13.1 41.3 24.3 23.3 27. 50. 50. 50. 22.7 25. 50. 23.8
23.8 22.3 17.4 19.1 23.1 23.6 22.6 29.4 23.2 24.6 29.9 37.2 39.8 36.2
37.9 32.5 26.4 29.6 50. 32. 29.8 34.9 37. 30.5 36.4 31.1 29.1 50.
33.3 30.3 34.6 34.9 32.9 24.1 42.3 48.5 50. 22.6 24.4 22.5 24.4 20.
21.7 19.3 22.4 28.1 23.7 25. 23.3 28.7 21.5 23. 26.7 21.7 27.5 30.1
44.8 50. 37.6 31.6 46.7 31.5 24.3 31.7 41.7 48.3 29. 24. 25.1 31.5
23.7 23.3 22. 20.1 22.2 23.7 17.6 18.5 24.3 20.5 24.5 26.2 24.4 24.8
29.6 42.8 21.9 20.9 44. 50. 36. 30.1 33.8 43.1 48.8 31. 36.5 22.8
30.7 50. 43.5 20.7 21.1 25.2 24.4 35.2 32.4 32. 33.2 33.1 29.1 35.1
45.4 35.4 46. 50. 32.2 22. 20.1 23.2 22.3 24.8 28.5 37.3 27.9 23.9
21.7 28.6 27.1 20.3 22.5 29. 24.8 22. 26.4 33.1 36.1 28.4 33.4 28.2
22.8 20.3 16.1 22.1 19.4 21.6 23.8 16.2 17.8 19.8 23.1 21. 23.8 23.1
20.4 18.5 25. 24.6 23. 22.2 19.3 22.6 19.8 17.1 19.4 22.2 20.7 21.1
19.5 18.5 20.6 19. 18.7 32.7 16.5 23.9 31.2 17.5 17.2 23.1 24.5 26.6
22.9 24.1 18.6 30.1 18.2 20.6 17.8 21.7 22.7 22.6 25. 19.9 20.8 16.8
21.9 27.5 21.9 23.1 50. 50. 50. 50. 50. 13.8 13.8 15. 13.9 13.3
13.1 10.2 10.4 10.9 11.3 12.3 8.8 7.2 10.5 7.4 10.2 11.5 15.1 23.2
9.7 13.8 12.7 13.1 12.5 8.5 5. 6.3 5.6 7.2 12.1 8.3 8.5 5.
11.9 27.9 17.2 27.5 15. 17.2 17.9 16.3 7. 7.2 7.5 10.4 8.8 8.4
16.7 14.2 20.8 13.4 11.7 8.3 10.2 10.9 11. 9.5 14.5 14.1 16.1 14.3
11.7 13.4 9.6 8.7 8.4 12.8 10.5 17.1 18.4 15.4 10.8 11.8 14.9 12.6
14.1 13. 13.4 15.2 16.1 17.8 14.9 14.1 12.7 13.5 14.9 20. 16.4 17.7
19.5 20.2 21.4 19.9 19. 19.1 19.1 20.1 19.9 19.6 23.2 29.8 13.8 13.3
16.7 12. 14.6 21.4 23. 23.7 25. 21.8 20.6 21.2 19.1 20.6 15.2 7.
8.1 13.6 20.1 21.8 24.5 23.1 19.7 18.3 21.2 17.5 16.8 22.4 20.6 23.9
22. 11.9]
#Convertir les variables explicatives en DataFrame
df = DataFrame(data=boston.data, columns = boston.feature_names)
#Ajouter une variable d'objectif à DataFrame
df['PRICE'] = np.array(boston.target)
#Afficher les 5 premières lignes
df.head(5)
Tout d'abord, faisons une analyse de régression simple qui prédit le prix à partir du nombre de chambres. Récupérez les données de l'emplacement avec le numéro de chambre (RM).
#Afficher les données en spécifiant des colonnes
df[['RM']].head()
(Référence: Check df.head): Fonctionnement des données de DataFrame des pandas
#Variable explicative
data = df.loc[:, ['RM']].values
#Afficher la liste des données(1-5)
data[0:5]
résultat
array([[6.575],
[6.421],
[7.185],
[6.998],
[7.147]])
#Variable objective
target = df.loc[:, 'PRICE'].values
target[0:5]
résultat
array([24. , 21.6, 34.7, 33.4, 36.2])
(Référence) Classe LinearRegression de sklearn
##Importer LinearRegression depuis le module sklearn
from sklearn.linear_model import LinearRegression
#Création d'objets
model = LinearRegression()
#model.get_params()
#model = LinearRegression(fit_intercept = True, normalize = False, copy_X = True, n_jobs = 1)
#Estimation des paramètres avec fonction d'ajustement
model.fit(data, target)
Création d'une instance à partir d'une classe (méthode sklearn) L'instance a une méthode.
résultat
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
Vous pouvez maintenant voir les prévisions. Prédire à l'aide du modèle créé par prédire (x).
#Prévoir
model.predict([[1]])
résultat
array([-25.5685118])
[(Référence): Comment utiliser la classe sklearn.linear_model.LinearRegression](https://pythondatascience.plavox.info/scikit-learn/%E7%B7%9A%E5%BD%A2%E5%9B%9E%E5% B8% B0)
df[['CRIM', 'RM']].head()
#Variable explicative
data2 = df.loc[:, ['CRIM', 'RM']].values
#Variable objective
target2 = df.loc[:, 'PRICE'].values
#Création d'objets
model2 = LinearRegression()
#Estimation des paramètres avec fonction d'ajustement
model2.fit(data2, target2)
résultat
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
model2.predict([[0.3, 4]])
résultat
array([4.24007956])
Combien coûte une propriété avec 4 chambres et un taux de criminalité de 0,3? La réponse est 4.24.
Sortie du coefficient de régression et de la section de régression simple La fonction d'ajustement va trouver le point qui minimise l'assistance quadratique moyenne. Il est important de comprendre cela et d'utiliser la fonction. La commande pour comprendre la valeur prédite (w hat) de w est la suivante.
print('Coefficient de régression estimé: %.3f,Section estimée: %.3f' % (model.coef_, model.intercept_))
résultat
Coefficient de régression estimé: 9.236,Section estimée: -35.481
Plus le taux de criminalité est élevé, moins il est bon marché, et plus le nombre de chambres est élevé, plus il est élevé.
#Sortie du coefficient de régression et de la section de régression multiple
print(model.coef_)
print(model.intercept_)
résultat
[9.23560156]
-35.48090633823544
#Coefficient de décision
print('Coefficient de détermination de régression simple: %.3f,Coefficient de détermination de la régression multiple: %.3f' % (model.score(data,target), model2.score(data2,target2)))
résultat
Coefficient de détermination de régression simple: 0.483,Coefficient de détermination de la régression multiple: 0.542
# train_test_Importer une division
from sklearn.model_selection import train_test_split
# 70%Pour apprendre, 30%Est divisé en données de vérification
X_train, X_test, y_train, y_test = train_test_split(data, target,
test_size = 0.3, random_state = 666)
#Estimation des paramètres avec les données d'entraînement
model.fit(X_train, y_train)
#Prédiction à partir du modèle créé (à l'aide de modèles de formation et de vérification)
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)
#Importer matplotlib
import matplotlib.pyplot as plt
#Si vous utilisez Jupyter, écrivez la magie suivante et un chiffre sera affiché sur le cahier
%matplotlib inline
#Tracer les résidus pour l'apprentissage et la vérification respectivement
plt.scatter(y_train_pred, y_train_pred - y_train, c = 'blue', marker = 'o', label = 'Train Data')
plt.scatter(y_test_pred, y_test_pred - y_test, c = 'lightgreen', marker = 's', label = 'Test Data')
plt.xlabel('Predicted Values')
plt.ylabel('Residuals')
#Légende affichée en haut à gauche
plt.legend(loc = 'upper left')
# y =Tracez une ligne droite vers 0
plt.hlines(y = 0, xmin = -10, xmax = 50, lw = 2, color = 'red')
plt.xlim([10, 50])
plt.show()
Liens connexes
table des matières Chapitre 1: Modèle de régression linéaire [Chapitre 2: Modèle de régression non linéaire] (https://qiita.com/matsukura04583/items/baa3f2269537036abc57) [Chapitre 3: Modèle de régression logistique] (https://qiita.com/matsukura04583/items/0fb73183e4a7a6f06aa5) [Chapitre 4: Analyse des composants principaux] (https://qiita.com/matsukura04583/items/b3b5d2d22189afc9c81c) [Chapitre 5: Algorithme 1 (méthode de voisinage k (kNN))] (https://qiita.com/matsukura04583/items/543719b44159322221ed) [Chapitre 6: Algorithme 2 (k-means)] (https://qiita.com/matsukura04583/items/050c98c7bb1c9e91be71) [Chapitre 7: Support Vector Machine] (https://qiita.com/matsukura04583/items/6b718642bcbf97ae2ca8)
Recommended Posts