On suppose que vous avez terminé le renforcement de l'apprentissage 19.
C'était une limite à jouer jusqu'à présent, alors chainerrl / examples / gym / train_dqn_gym.py J'ai fait un cahier collaboratif presque tel quel. Le point que j'ai conçu est
args = parser.parse_args('')
c'est sombre. Cela a pris environ 50 minutes, mais ça devrait aller. Je ne comprends pas vraiment les détails.
import google.colab.drive
google.colab.drive.mount('gdrive')
!ln -s gdrive/My\ Drive mydrive
!apt-get install -y xvfb python-opengl ffmpeg > /dev/null 2>&1
!pip install pyvirtualdisplay > /dev/null 2>&1
!pip -q install JSAnimation
!pip -q install chainerrl
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import division
from __future__ import absolute_import
from builtins import * # NOQA
from future import standard_library
standard_library.install_aliases() # NOQA
import argparse
import os
import sys
from chainer import optimizers
import gym
from gym import spaces
import numpy as np
import chainerrl
from chainerrl.agents.dqn import DQN
from chainerrl import experiments
from chainerrl import explorers
from chainerrl import links
from chainerrl import misc
from chainerrl import q_functions
from chainerrl import replay_buffer
import logging
logging.basicConfig(level=logging.INFO, stream=sys.stdout, format='')
parser = argparse.ArgumentParser()
parser.add_argument('--outdir', type=str, default='mydrive/OpenAI/Pendulum/result')
parser.add_argument('--env', type=str, default='Pendulum-v0')
parser.add_argument('--seed', type=int, default=0),
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--final-exploration-steps',type=int, default=10 ** 4)
parser.add_argument('--start-epsilon', type=float, default=1.0)
parser.add_argument('--end-epsilon', type=float, default=0.1)
parser.add_argument('--noisy-net-sigma', type=float, default=None)
parser.add_argument('--demo', action='store_true', default=False)
parser.add_argument('--load', type=str, default=None)
parser.add_argument('--steps', type=int, default=10 ** 5)
parser.add_argument('--prioritized-replay', action='store_true')
parser.add_argument('--replay-start-size', type=int, default=1000)
parser.add_argument('--target-update-interval', type=int, default=10 ** 2)
parser.add_argument('--target-update-method', type=str, default='hard')
parser.add_argument('--soft-update-tau', type=float, default=1e-2)
parser.add_argument('--update-interval', type=int, default=1)
parser.add_argument('--eval-n-runs', type=int, default=100)
parser.add_argument('--eval-interval', type=int, default=10 ** 4)
parser.add_argument('--n-hidden-channels', type=int, default=100)
parser.add_argument('--n-hidden-layers', type=int, default=2)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--minibatch-size', type=int, default=None)
parser.add_argument('--render-train', action='store_true')
parser.add_argument('--render-eval', action='store_true')
parser.add_argument('--monitor', action='store_true')
parser.add_argument('--reward-scale-factor', type=float, default=1e-3)
args = parser.parse_args('')
# Set a random seed used in ChainerRL
misc.set_random_seed(args.seed, gpus=(args.gpu,))
if os.path.exists(args.outdir):
raise RuntimeError('{} exists'.format(args.outdir))
else:
os.makedirs(args.outdir)
print('Output files are saved in {}'.format(args.outdir))
def clip_action_filter(a):
return np.clip(a, action_space.low, action_space.high)
def make_env(test):
env = gym.make(args.env)
# Use different random seeds for train and test envs
env_seed = 2 ** 32 - 1 - args.seed if test else args.seed
env.seed(env_seed)
# Cast observations to float32 because our model uses float32
env = chainerrl.wrappers.CastObservationToFloat32(env)
if args.monitor:
env = chainerrl.wrappers.Monitor(env, args.outdir)
if isinstance(env.action_space, spaces.Box):
misc.env_modifiers.make_action_filtered(env, clip_action_filter)
if not test:
# Scale rewards (and thus returns) to a reasonable range so that
# training is easier
env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor)
if ((args.render_eval and test) or
(args.render_train and not test)):
env = chainerrl.wrappers.Render(env)
return env
env = make_env(test=False)
timestep_limit = env.spec.tags.get(
'wrapper_config.TimeLimit.max_episode_steps')
obs_space = env.observation_space
obs_size = obs_space.low.size
action_space = env.action_space
action_size = action_space.low.size
# Use NAF to apply DQN to continuous action spaces
q_func = q_functions.FCQuadraticStateQFunction(
obs_size, action_size,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=args.n_hidden_layers,
action_space=action_space)
# Use the Ornstein-Uhlenbeck process for exploration
ou_sigma = (action_space.high - action_space.low) * 0.2
explorer = explorers.AdditiveOU(sigma=ou_sigma)
if args.noisy_net_sigma is not None:
links.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma)
# Turn off explorer
explorer = explorers.Greedy()
# Draw the computational graph and save it in the output directory.
chainerrl.misc.draw_computational_graph(
[q_func(np.zeros_like(obs_space.low, dtype=np.float32)[None])],
os.path.join(args.outdir, 'model'))
opt = optimizers.Adam()
opt.setup(q_func)
rbuf_capacity = 5 * 10 ** 5
if args.minibatch_size is None:
args.minibatch_size = 32
if args.prioritized_replay:
betasteps = (args.steps - args.replay_start_size) \
// args.update_interval
rbuf = replay_buffer.PrioritizedReplayBuffer(
rbuf_capacity, betasteps=betasteps)
else:
rbuf = replay_buffer.ReplayBuffer(rbuf_capacity)
agent = DQN(q_func, opt, rbuf, gpu=args.gpu, gamma=args.gamma,
explorer=explorer, replay_start_size=args.replay_start_size,
target_update_interval=args.target_update_interval,
update_interval=args.update_interval,
minibatch_size=args.minibatch_size,
target_update_method=args.target_update_method,
soft_update_tau=args.soft_update_tau,
)
if args.load:
agent.load(args.load)
eval_env = make_env(test=True)
experiments.train_agent_with_evaluation(
agent=agent, env=env, steps=args.steps,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs, eval_interval=args.eval_interval,
outdir=args.outdir, eval_env=eval_env,
train_max_episode_len=timestep_limit)
agent.save(args.outdir+'/agent')
import pandas as pd
import glob
import os
score_files = glob.glob(args.outdir+'/scores.txt')
score_files.sort(key=os.path.getmtime)
score_file = score_files[-1]
df = pd.read_csv(score_file, delimiter='\t' )
df
df.plot(x='steps',y='average_q')
from pyvirtualdisplay import Display
display = Display(visible=0, size=(1024, 768))
display.start()
from JSAnimation.IPython_display import display_animation
from matplotlib import animation
import matplotlib.pyplot as plt
%matplotlib inline
frames = []
env = gym.make(args.env)
# Use different random seeds for train and test envs
env_seed = args.seed
env.seed(env_seed)
# Cast observations to float32 because our model uses float32
env = chainerrl.wrappers.CastObservationToFloat32(env)
misc.env_modifiers.make_action_filtered(env, clip_action_filter)
# Scale rewards (and thus returns) to a reasonable range so that
# training is easier
env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor)
envw = gym.wrappers.Monitor(env, args.outdir, force=True)
for i in range(3):
obs = envw.reset()
done = False
R = 0
t = 0
while not done and t < 200:
frames.append(envw.render(mode = 'rgb_array'))
action = agent.act(obs)
obs, r, done, _ = envw.step(action)
R += r
t += 1
print('test episode:', i, 'R:', R)
agent.stop_episode()
#envw.render()
envw.close()
from IPython.display import HTML
plt.figure(figsize=(frames[0].shape[1]/72.0, frames[0].shape[0]/72.0),dpi=72)
patch = plt.imshow(frames[0])
plt.axis('off')
def animate(i):
patch.set_data(frames[i])
anim = animation.FuncAnimation(plt.gcf(), animate, frames=len(frames),interval=50)
anim.save(args.outdir+'/test.mp4')
HTML(anim.to_jshtml())
Recommended Posts