On suppose que l'apprentissage par renforcement 17 est terminé. Je les ai d'abord résumés pour faciliter la modification des paramètres. Il faut environ 30 minutes pour apprendre 200 fois. À ce niveau, il était lent lors de l'utilisation du GPU. Le processeur est recommandé. Si vous étudiez pendant une longue période, vous serez pris dans la règle des 12 heures. Il semble bon de le diviser en petits morceaux. Si vous souhaitez subdiviser, après avoir appris 100 fois, comme sauvegarde Comme agent.save (save_point_num). Si vous voulez partir du milieu Cela devrait ressembler à agent.load (last_save_point).
import google.colab.drive
google.colab.drive.mount('gdrive')
!ln -s gdrive/My\ Drive mydrive
!apt-get install -y xvfb python-opengl ffmpeg > /dev/null 2>&1
!pip install pyvirtualdisplay > /dev/null 2>&1
!pip -q install JSAnimation
!pip -q install chainerrl
gamename='Acrobot-v1'
# Set the discount factor that discounts future rewards.
gamma = 0.99
# Use epsilon-greedy for exploration
myepsilon=0.03
myDir='mydrive/OpenAI/Acrobot/'
mySteps=200000 # Train the agent for 2000 steps
my_eval_n_episodes=1 # 10 episodes are sampled for each evaluation
my_eval_max_episode_len=200 # Maximum length of each episodes
my_eval_interval=1000 # Evaluate the agent after every 1000 steps
myOutDir=myDir+'result' # Save everything to 'result' directory
myAgentDir=myDir+'agent' # Save Agent to 'agent' directory
myAnimName=myDir+'movie_acrobot.mp4'
myScoreName=myDir+"result/scores.txt"
Program
import
import chainer
import chainer.functions as F
import chainer.links as L
import chainerrl
import gym
import numpy as np
env initialize
env = gym.make(gamename)
print('observation space:', env.observation_space)
print('action space:', env.action_space)
obs = env.reset()
print('initial observation:', obs)
action = env.action_space.sample()
obs, r, done, info = env.step(action)
print('next observation:', obs)
print('reward:', r)
print('done:', done)
print('info:', info)
Deep Q Network setting
obs_size = env.observation_space.shape[0]
n_actions = env.action_space.n
q_func = chainerrl.q_functions.FCStateQFunctionWithDiscreteAction(
obs_size, n_actions,
n_hidden_layers=2, n_hidden_channels=50)
Use Adam to optimize q_func. eps=1e-2 is for stability.
optimizer = chainer.optimizers.Adam(eps=1e-2)
optimizer.setup(q_func)
Agent Setting DQN uses Experience Replay.
Specify a replay buffer and its capacity.
Since observations from CartPole-v0 is numpy.float64 while
Chainer only accepts numpy.float32 by default, specify a converter as a feature extractor function phi.
explorer = chainerrl.explorers.ConstantEpsilonGreedy(
epsilon=myepsilon, random_action_func=env.action_space.sample)
replay_buffer = chainerrl.replay_buffer.ReplayBuffer(capacity=10 ** 6)
phi = lambda x: x.astype(np.float32, copy=False)
agent = chainerrl.agents.DoubleDQN(
q_func, optimizer, replay_buffer, gamma, explorer,
replay_start_size=500, update_interval=1,
target_update_interval=100, phi=phi)
Train
Set up the logger to print info messages for understandability.
import logging
import sys
logging.basicConfig(level=logging.INFO, stream=sys.stdout, format='')
chainerrl.experiments.train_agent_with_evaluation(
agent, env,steps=mySteps,eval_n_steps=None,eval_n_episodes=my_eval_n_episodes,eval_max_episode_len=my_eval_max_episode_len,
eval_interval=my_eval_interval,outdir=myOutDir)
agent.save(myAgentDir)
Data Table
import pandas as pd
import glob
import os
score_files = glob.glob(myScoreName)
score_files.sort(key=os.path.getmtime)
score_file = score_files[-1]
df = pd.read_csv(score_file, delimiter='\t' )
df
figure Average_Q
df.plot(x='steps',y='average_q')
Test
import2
from pyvirtualdisplay import Display
display = Display(visible=0, size=(1024, 768))
display.start()
from JSAnimation.IPython_display import display_animation
from matplotlib import animation
import matplotlib.pyplot as plt
%matplotlib inline
Test Program
frames = []
env = gym.make(gamename)
envw = gym.wrappers.Monitor(env, myOutDir, force=True)
for i in range(3):
obs = envw.reset()
done = False
R = 0
t = 0
while not done and t < 200:
frames.append(envw.render(mode = 'rgb_array'))
action = agent.act(obs)
obs, r, done, _ = envw.step(action)
R += r
t += 1
print('test episode:', i, 'R:', R)
agent.stop_episode()
#envw.render()
envw.close()
from IPython.display import HTML
plt.figure(figsize=(frames[0].shape[1]/72.0, frames[0].shape[0]/72.0),dpi=72)
patch = plt.imshow(frames[0])
plt.axis('off')
def animate(i):
patch.set_data(frames[i])
anim = animation.FuncAnimation(plt.gcf(), animate, frames=len(frames),interval=50)
anim.save(myAnimName)
HTML(anim.to_jshtml())
Recommended Posts