[PYTHON] Renforcer l'apprentissage 18 Colaboratory + Acrobat + ChainerRL

On suppose que l'apprentissage par renforcement 17 est terminé. Je les ai d'abord résumés pour faciliter la modification des paramètres. Il faut environ 30 minutes pour apprendre 200 fois. À ce niveau, il était lent lors de l'utilisation du GPU. Le processeur est recommandé. Si vous étudiez pendant une longue période, vous serez pris dans la règle des 12 heures. Il semble bon de le diviser en petits morceaux. Si vous souhaitez subdiviser, après avoir appris 100 fois, comme sauvegarde Comme agent.save (save_point_num). Si vous voulez partir du milieu Cela devrait ressembler à agent.load (last_save_point).

Monture Google Drive

import google.colab.drive
google.colab.drive.mount('gdrive')
!ln -s gdrive/My\ Drive mydrive

Installation

!apt-get install -y xvfb python-opengl ffmpeg > /dev/null 2>&1
!pip install pyvirtualdisplay > /dev/null 2>&1
!pip -q install JSAnimation
!pip -q install chainerrl

Initialisation des paramètres


gamename='Acrobot-v1'
# Set the discount factor that discounts future rewards.
gamma = 0.99
# Use epsilon-greedy for exploration
myepsilon=0.03
myDir='mydrive/OpenAI/Acrobot/'
mySteps=200000 # Train the agent for 2000 steps
my_eval_n_episodes=1 # 10 episodes are sampled for each evaluation
my_eval_max_episode_len=200  # Maximum length of each episodes
my_eval_interval=1000   # Evaluate the agent after every 1000 steps
myOutDir=myDir+'result'      # Save everything to 'result' directory
myAgentDir=myDir+'agent'      # Save Agent to 'agent' directory
myAnimName=myDir+'movie_acrobot.mp4'
myScoreName=myDir+"result/scores.txt"

Program

import


import chainer
import chainer.functions as F
import chainer.links as L
import chainerrl
import gym
import numpy as np

env initialize


env = gym.make(gamename)
print('observation space:', env.observation_space)
print('action space:', env.action_space)

obs = env.reset()
print('initial observation:', obs)
action = env.action_space.sample()
obs, r, done, info = env.step(action)
print('next observation:', obs)
print('reward:', r)
print('done:', done)
print('info:', info)

Deep Q Network setting


obs_size = env.observation_space.shape[0]
n_actions = env.action_space.n
q_func = chainerrl.q_functions.FCStateQFunctionWithDiscreteAction(
    obs_size, n_actions,
    n_hidden_layers=2, n_hidden_channels=50)

Use Adam to optimize q_func. eps=1e-2 is for stability.


optimizer = chainer.optimizers.Adam(eps=1e-2)
optimizer.setup(q_func)

Agent Setting DQN uses Experience Replay.

Specify a replay buffer and its capacity.

Since observations from CartPole-v0 is numpy.float64 while

Chainer only accepts numpy.float32 by default, specify a converter as a feature extractor function phi.


explorer = chainerrl.explorers.ConstantEpsilonGreedy(
    epsilon=myepsilon, random_action_func=env.action_space.sample)
replay_buffer = chainerrl.replay_buffer.ReplayBuffer(capacity=10 ** 6)
phi = lambda x: x.astype(np.float32, copy=False)
agent = chainerrl.agents.DoubleDQN(
    q_func, optimizer, replay_buffer, gamma, explorer,
    replay_start_size=500, update_interval=1,
    target_update_interval=100, phi=phi)

Train

Set up the logger to print info messages for understandability.


import logging
import sys
logging.basicConfig(level=logging.INFO, stream=sys.stdout, format='')
chainerrl.experiments.train_agent_with_evaluation(
    agent, env,steps=mySteps,eval_n_steps=None,eval_n_episodes=my_eval_n_episodes,eval_max_episode_len=my_eval_max_episode_len,
    eval_interval=my_eval_interval,outdir=myOutDir)
agent.save(myAgentDir)

Data Table


import pandas as pd
import glob
import os
score_files = glob.glob(myScoreName)
score_files.sort(key=os.path.getmtime)
score_file = score_files[-1]
df = pd.read_csv(score_file, delimiter='\t' )
df

figure Average_Q


df.plot(x='steps',y='average_q')

Test

import2


from pyvirtualdisplay import Display
display = Display(visible=0, size=(1024, 768))
display.start()


from JSAnimation.IPython_display import display_animation
from matplotlib import animation
import matplotlib.pyplot as plt
%matplotlib inline

Test Program


frames = []
env = gym.make(gamename)
envw = gym.wrappers.Monitor(env, myOutDir, force=True)

for i in range(3):
    obs = envw.reset()
    done = False
    R = 0
    t = 0
    while not done and t < 200:
        frames.append(envw.render(mode = 'rgb_array'))
        action = agent.act(obs)
        obs, r, done, _ = envw.step(action)
        R += r
        t += 1
    print('test episode:', i, 'R:', R)
    agent.stop_episode()
#envw.render()
envw.close()

from IPython.display import HTML
plt.figure(figsize=(frames[0].shape[1]/72.0, frames[0].shape[0]/72.0),dpi=72)
patch = plt.imshow(frames[0])
plt.axis('off') 
def animate(i):
    patch.set_data(frames[i])
anim = animation.FuncAnimation(plt.gcf(), animate, frames=len(frames),interval=50)
anim.save(myAnimName)
HTML(anim.to_jshtml())

Recommended Posts

Renforcer l'apprentissage 18 Colaboratory + Acrobat + ChainerRL
Renforcer l'apprentissage 17 Colaboratory + CartPole + ChainerRL
Renforcer l'apprentissage 28 collaboratif + OpenAI + chainerRL
Renforcer l'apprentissage 19 Colaboratory + Mountain_car + ChainerRL
Renforcer l'apprentissage 20 Colaboratoire + Pendule + ChainerRL
Renforcer l'apprentissage 21 Colaboratoire + Pendule + ChainerRL + A2C
Renforcer l'apprentissage 22 Colaboratory + CartPole + ChainerRL + A3C
Renforcer l'apprentissage 24 Colaboratory + CartPole + ChainerRL + ACER
Apprentissage par renforcement 27 chainerRL (+ chokozainerRL)
Renforcement de l'apprentissage 2 Installation de chainerrl
Apprentissage par renforcement 9 Remodelage magique ChainerRL
Renforcer l'apprentissage 13 Essayez Mountain_car avec ChainerRL.
[Introduction] Renforcer l'apprentissage
Apprentissage par renforcement futur_2
Apprentissage par renforcement futur_1
Renforcer l'apprentissage 14 Pendulum a été réalisé à ChainerRL.
Renforcer l'apprentissage 11 Essayez OpenAI acrobot avec ChainerRL.
Renforcer l'apprentissage 12 Guide de démarrage rapide de ChainerRL Version Windows
Apprentissage amélioré 1 installation de Python
Renforcer l'apprentissage 3 Installation d'OpenAI
Renforcer l'apprentissage de la troisième ligne
[Renforcer l'apprentissage] Tâche de bandit
Apprentissage amélioré Python + Unity (apprentissage)
Renforcer l'apprentissage 1 édition introductive
Apprentissage amélioré 7 Sortie du journal des données d'apprentissage
[Renforcer l'apprentissage] Suivi par multi-agents
Renforcer l'apprentissage 6 First Chainer RL
Apprentissage amélioré à partir de Python
Apprentissage par renforcement 5 Essayez de programmer CartPole?
Renforcer l'apprentissage Apprendre d'aujourd'hui
Renforcer l'apprentissage 4 CartPole première étape
Apprentissage par renforcement profond 1 Introduction au renforcement de l'apprentissage
Apprentissage par renforcement 23 Créez et utilisez votre propre module avec Colaboratory
Apprentissage par renforcement profond 2 Mise en œuvre de l'apprentissage par renforcement
DeepMind Enhanced Learning Framework Acme
Apprentissage par renforcement: accélérer l'itération de la valeur
J'ai essayé l'apprentissage par renforcement profond (Double DQN) avec ChainerRL
TF2RL: bibliothèque d'apprentissage améliorée pour TensorFlow2.x
Apprentissage par renforcement 34 Créez des vidéos d'agent en continu
Construction d'un environnement d'apprentissage amélioré Python + Unity
Explorez le labyrinthe avec l'apprentissage augmenté
Renforcer l'apprentissage 8 Essayez d'utiliser l'interface utilisateur de Chainer
Apprentissage par renforcement 3 Méthode de planification dynamique / méthode TD
Deep Strengthening Learning 3 Édition pratique: Briser des blocs
J'ai essayé l'apprentissage par renforcement avec PyBrain
Apprenez en faisant! Apprentissage par renforcement profond_1