[PYTHON] yukicoder contest 254 Participation record

yukicoder contest 254 Participation record

A 1095 Smallest Kadomatsu Subsequence

If you write it in naive, it will be * O * (* N * 2 </ sup>). At first I thought it was a seg tree, but I didn't feel like I could search for the minimum value above the specified value. Therefore, it became a balanced binary search tree. While maintaining the balanced binary search tree on the left and right sides of the central gate pine, find the minimum value for convex and the minimum value larger than the middle size for concave. All you have to do is find the minimum size of the gate pine row. * O * ( N </ i> log N </ i>).

package main

import (
	"bufio"
	"fmt"
	"math"
	"os"
	"strconv"
	"strings"
)

var (
	y uint = 88172645463325252
)

func xorshift() uint {
	y ^= y << 7
	y ^= y >> 9
	return y
}

type treapNode struct {
	value    int
	priority uint
	count    int
	left     *treapNode
	right    *treapNode
}

func newTreapNode(v int) *treapNode {
	return &treapNode{v, xorshift(), 1, nil, nil}
}

func treapRotateRight(n *treapNode) *treapNode {
	l := n.left
	n.left = l.right
	l.right = n
	return l
}

func treapRotateLeft(n *treapNode) *treapNode {
	r := n.right
	n.right = r.left
	r.left = n
	return r
}

func treapInsert(n *treapNode, v int) *treapNode {
	if n == nil {
		return newTreapNode(v)
	}
	if n.value == v {
		n.count++
		return n
	}
	if n.value > v {
		n.left = treapInsert(n.left, v)
		if n.priority > n.left.priority {
			n = treapRotateRight(n)
		}
	} else {
		n.right = treapInsert(n.right, v)
		if n.priority > n.right.priority {
			n = treapRotateLeft(n)
		}
	}
	return n
}

func treapDelete(n *treapNode, v int) *treapNode {
	if n == nil {
		panic("node is not found!")
	}
	if n.value > v {
		n.left = treapDelete(n.left, v)
		return n
	}
	if n.value < v {
		n.right = treapDelete(n.right, v)
		return n
	}

	// n.value == v
	if n.count > 1 {
		n.count--
		return n
	}

	if n.left == nil && n.right == nil {
		return nil
	}

	if n.left == nil {
		n = treapRotateLeft(n)
	} else if n.right == nil {
		n = treapRotateRight(n)
	} else {
		// n.left != nil && n.right != nil
		if n.left.priority < n.right.priority {
			n = treapRotateRight(n)
		} else {
			n = treapRotateLeft(n)
		}
	}
	return treapDelete(n, v)
}

func treapCount(n *treapNode) int {
	if n == nil {
		return 0
	}
	return n.count + treapCount(n.left) + treapCount(n.right)
}

func treapString(n *treapNode) string {
	if n == nil {
		return ""
	}
	result := make([]string, 0)
	if n.left != nil {
		result = append(result, treapString(n.left))
	}
	result = append(result, fmt.Sprintf("%d:%d", n.value, n.count))
	if n.right != nil {
		result = append(result, treapString(n.right))
	}
	return strings.Join(result, " ")
}

func treapMin(n *treapNode) int {
	if n.left != nil {
		return treapMin(n.left)
	}
	return n.value
}

func treapGEMin(n *treapNode, v int) int {
	if n.value == v {
		return v
	}
	if n.value > v {
		if n.left != nil {
			return treapGEMin(n.left, v)
		}
		return n.value
	}
	// n.value < v
	if n.right != nil {
		return treapGEMin(n.right, v)
	}
	return math.MaxInt64
}

func treapMax(n *treapNode) int {
	if n.right != nil {
		return treapMax(n.right)
	}
	return n.value
}

type treap struct {
	root *treapNode
	size int
}

func (t *treap) Insert(v int) {
	t.root = treapInsert(t.root, v)
	t.size++
}

func (t *treap) Delete(v int) {
	t.root = treapDelete(t.root, v)
	t.size--
}

func (t *treap) String() string {
	return treapString(t.root)
}

func (t *treap) Count() int {
	return t.size
}

func (t *treap) Min() int {
	return treapMin(t.root)
}

func (t *treap) Max() int {
	return treapMax(t.root)
}

func (t *treap) GEMin(v int) int {
	return treapGEMin(t.root, v)
}

func min(x, y int) int {
	if x < y {
		return x
	}
	return y
}

func main() {
	defer flush()

	N := readInt()
	A := make([]int, N)
	for i := 0; i < N; i++ {
		A[i] = readInt()
	}

	lt := &treap{}
	rt := &treap{}
	lt.Insert(A[0])
	for i := 2; i < N; i++ {
		rt.Insert(A[i])
	}

	result := math.MaxInt64
	for i := 1; i < N-1; i++ {
		a := lt.Min()
		b := rt.Min()
		if a <= A[i] && b <= A[i] {
			// printf("Convex%d %d %d\n", a, A[i], b)
			result = min(result, a+A[i]+b)
		}

		c := lt.GEMin(A[i])
		d := rt.GEMin(A[i])
		if c != math.MaxInt64 && d != math.MaxInt64 && c >= A[i] && d >= A[i] {
			// printf("Concave%d %d %d\n", c, A[i], d)
			result = min(result, c+A[i]+d)
		}

		lt.Insert(A[i])
		rt.Delete(A[i+1])
	}
	if result == math.MaxInt64 {
		println(-1)
	} else {
		println(result)
	}
}

const (
	ioBufferSize = 1 * 1024 * 1024 // 1 MB
)

var stdinScanner = func() *bufio.Scanner {
	result := bufio.NewScanner(os.Stdin)
	result.Buffer(make([]byte, ioBufferSize), ioBufferSize)
	result.Split(bufio.ScanWords)
	return result
}()

func readString() string {
	stdinScanner.Scan()
	return stdinScanner.Text()
}

func readInt() int {
	result, err := strconv.Atoi(readString())
	if err != nil {
		panic(err)
	}
	return result
}

func readInts(n int) []int {
	result := make([]int, n)
	for i := 0; i < n; i++ {
		result[i] = readInt()
	}
	return result
}

var stdoutWriter = bufio.NewWriter(os.Stdout)

func flush() {
	stdoutWriter.Flush()
}

func printf(f string, args ...interface{}) (int, error) {
	return fmt.Fprintf(stdoutWriter, f, args...)
}

func println(args ...interface{}) (int, error) {
	return fmt.Fprintln(stdoutWriter, args...)
}

Addendum: It also passes below. The cumulative Min from the left and right is used. Since the minimum value above the specified value cannot be searched, the concave type kadomatsu row when A i </ sub> is B is Even if it can be created, it may be said that it cannot be created. I think that it is a lie solution, but I am thinking of a counterexample, but I can not think of it. * O * (* N *).

from itertools import accumulate

INF = float('inf')

N, *A = map(int, open(0).read().split())

l = list(accumulate(A, min))
r = list(accumulate(A[::-1], min))[::-1]

result = INF

#In the case of convex type Kadomatsu row
for i in range(1, N - 1):
    a = l[i - 1]
    b = A[i]
    c = r[i + 1]
    if a <= b and c <= b:
        result = min(result, a + b + c)

#In the case of concave type Kadomatsu row
for i in range(1, N - 1):
    a = l[i - 1]
    b = A[i]
    c = r[i + 1]
    if b <= a and b <= c:
        result = min(result, a + b + c)

if result == INF:
    print(-1)
else:
    print(result)

B 1096 Range Sums

If you write it in naive, it will be * O * (* N * 3 </ sup>). Even if you add it up, * O * (* N * 2 </ sup>). By inputting, it became * O * ( N </ i> log N </ i>) and solved.

from operator import add
from itertools import accumulate


class SegmentTree:
    _f = None
    _size = None
    _offset = None
    _data = None

    def __init__(self, size, f):
        self._f = f
        self._size = size
        t = 1
        while t < size:
            t *= 2
        self._offset = t - 1
        self._data = [0] * (t * 2 - 1)

    def build(self, iterable):
        f = self._f
        data = self._data
        data[self._offset:self._offset + self._size] = iterable
        for i in range(self._offset - 1, -1, -1):
            data[i] = f(data[i * 2 + 1], data[i * 2 + 2])

    def query(self, start, stop):
        def iter_segments(data, l, r):
            while l < r:
                if l & 1 == 0:
                    yield data[l]
                if r & 1 == 0:
                    yield data[r - 1]
                l = l // 2
                r = (r - 1) // 2
        f = self._f
        it = iter_segments(self._data, start + self._offset,
                           stop + self._offset)
        result = next(it)
        for e in it:
            result = f(result, e)
        return result


N, *A = map(int, open(0).read().split())

a = list(accumulate(A))

st = SegmentTree(N, add)
st.build(a)

result = 0
result += st.query(0, N)
for i in range(1, N):
    result += st.query(i, N) - a[i - 1] * (N - i)
print(result)

Addendum: A i </ sub> is added to the answer when l = 1, .., i and r = i, ..., N, so the number of times it is added to the answer is (i). + 1) × (N --i) It was easy to think that it would be. * O * (* N *).

N, *A = map(int, open(0).read().split())

result = 0
for i in range(N):
    # l = 0 .. i, r = i .. N - 1
    result += A[i] * (i + 1) * (N - i)
print(result)

Addendum: Some people said that they solved it with Sparse table instead of Seg tree, but I made a mistake in Disjoint sparse table? Sparse table requires idempotency in operation, but unlike Min, Sum does not. Disjoint I didn't have an implementation of sparse table so I couldn't try it.

Addendum: Implemented Disjoint sparse table.

from itertools import accumulate
from operator import add


class DisjointSparseTable:
    _f = None
    _data = None
    _lookup = None

    def __init__(self, a, f):
        self._f = f
        b = 0
        while (1 << b) <= len(a):
            b += 1
        _data = [[0] * len(a) for _ in range(b)]
        _data[0] = a[:]
        for i in range(1, b):
            shift = 1 << i
            for j in range(0, len(a), shift << 1):
                t = min(j + shift, len(a))
                _data[i][t - 1] = a[t - 1]
                for k in range(t - 2, j - 1, -1):
                    _data[i][k] = f(a[k], _data[i][k + 1])
                if t >= len(a):
                    break
                _data[i][t] = a[t]
                r = min(t + shift, len(a))
                for k in range(t + 1, r):
                    _data[i][k] = f(_data[i][k - 1], a[k])
        self._data = _data
        _lookup = [0] * (1 << b)
        for i in range(2, len(_lookup)):
            _lookup[i] = _lookup[i >> 1] + 1
        self._lookup = _lookup

    def query(self, start, stop):
        stop -= 1
        if start >= stop:
            return self._data[0][start]
        p = self._lookup[start ^ stop]
        return self._f(self._data[p][start], self._data[p][stop])


N, *A = map(int, open(0).read().split())

a = list(accumulate(A))

st = DisjointSparseTable(a, add)

result = 0
result += st.query(0, N)
for i in range(1, N):
    result += st.query(i, N) - a[i - 1] * (N - i)
print(result)

C 1097 Remainder Operation

I was happy to solve it 2 minutes before the end. The same remainder appears within N times and loops. If you detect the loop and find the length of one cycle and the increment in one loop, the query will be * O * (1). ), So I solved it with * O * (* N * + * Q *). I remembered ABC167D --Teleporter.

from sys import stdin
readline = stdin.readline

N = int(readline())
A = list(map(int, readline().split()))

X = 0
b = [-1]
c = [X]
used = set()
while True:
    r = X % N
    X += A[r]
    if r in used:
        break
    used.add(r)
    b.append(r)
    c.append(X)
b.append(r)
c.append(X)
loop_start = b.index(b[-1])
loop_len = len(b) - loop_start - 1

Q = int(readline())
for _ in range(Q):
    K = int(readline())
    if K < len(b):
        print(c[K])
    else:
        K -= loop_start
        a = K // loop_len
        K %= loop_len
        K += loop_start
        print(c[K] + a * (c[-1] - c[loop_start]))

Recommended Posts