Dies
Mach das: Engel:
plot_tree
Erstellen Sie zunächst einen Entscheidungsbaum normal und visualisieren Sie ihn mit plot_tree
.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.tree import DecisionTreeClassifier, plot_tree
data = load_breast_cancer()
X, y = data['data'], data['target']
feature_names = data['feature_names']
model = DecisionTreeClassifier(criterion='entropy').fit(X,y)
plt.figure(figsize=(12, 4), dpi=200)
plot_tree(model, feature_names=feature_names, filled=True)
plt.show()
es ist normal.
Treemap
Als nächstes zerlegen wir den von uns erstellten Entscheidungsbaum und visualisieren ihn mit "Treemap".
import plotly.graph_objects as go
labels = [''] * model.tree_.node_count
parents = [''] * model.tree_.node_count
labels[0] = 'root'
for i, (f, t, l, r) in enumerate(zip(
model.tree_.feature,
model.tree_.threshold,
model.tree_.children_left,
model.tree_.children_right,
)):
if l != r:
labels[l] = f'{feature_names[f]} <= {t:g}'
labels[r] = f'{feature_names[f]} > {t:g}'
parents[l] = parents[r] = labels[i]
fig = go.Figure(go.Treemap(
branchvalues='total',
labels=labels,
parents=parents,
values=model.tree_.n_node_samples,
textinfo='label+value+percent root',
marker=dict(colors=model.tree_.impurity),
customdata=list(map(str, model.tree_.value)),
hovertemplate='''
<b>%{label}</b><br>
impurity: %{color}<br>
samples: %{value} (%{percentRoot:%.2f})<br>
value: %{customdata}'''
))
fig.show()
Knoten, die zerstört und unsichtbar sind, können durch Klicken auf einen Sektor angezeigt werden.
Im Gegensatz zu plot_tree
können Sie nicht jede Klasse einfärben, daher kann es schwierig sein, sie ohne binäre Klassifizierung oder Regression zu verwenden: heat_smile:
Recommended Posts