[PYTHON] 100 Sprachverarbeitungsklopfen (2020): 46

"""
## 46.Extraktion von Verb-Case-Frame-Informationen[Permalink](https://nlp100.github.io/ja/ch05.html#46-ExtraktionvonVerb-Case-Frame-Informationen)

Ändern Sie 45 Programme und Ausgabebegriffe (die Klauseln, die sich auf die Prädikate selbst beziehen) in tabulatorgetrennten Formaten, indem Sie den Prädikaten und Fallmustern folgen. Erfüllen Sie zusätzlich zu den 45 Spezifikationen die folgenden Spezifikationen.

-Der Begriff sollte eine Wortfolge der Klausel sein, die sich auf das Prädikat bezieht (es ist nicht erforderlich, das nachfolgende Verb zu entfernen).
-Wenn es mehrere Klauseln gibt, die sich auf das Prädikat beziehen, ordnen Sie sie in derselben Norm und Reihenfolge wie die Hilfswörter an, die durch Leerzeichen getrennt sind.

Ein Beispielsatz "Ich habe hier zum ersten Mal einen Menschen gesehen" (neko.txt.Betrachten Sie den 8. Satz von Cabocha). Dieser Satz enthält zwei Verben, "begin" und "see", und die Phrase, die sich auf "begin" bezieht, wird als "here" analysiert, und die Phrase, die sich auf "see" bezieht, wird als "I am" und "thing" analysiert. Sollte die folgende Ausgabe erzeugen.


Fang hier an
Sehen Sie, was ich sehe


"""
from collections import defaultdict
from typing import List


def read_file(fpath: str) -> List[List[str]]:
    """Get clear format of parsed sentences.

    Args:
        fpath (str): File path.

    Returns:
        List[List[str]]: List of sentences, and each sentence contains a word list.
                         e.g. result[1]:
                            ['* 0 2D 0/0 -0.764522',
                             '\u3000\t Symbol,Leer,*,*,*,*,\u3000,\u3000,\u3000',
                             '* 1 2D 0/1 -0.764522',
                             'ich\t Substantiv,Gleichbedeutend,Allgemeines,*,*,*,ich,Wagahai,Wagahai',
                             'Ist\t Assistent,Hilfe,*,*,*,*,Ist,C.,Beeindruckend',
                             '* 2 -1D 0/2 0.000000',
                             'Katze\t Substantiv,Allgemeines,*,*,*,*,Katze,Katze,Katze',
                             'damit\t Hilfsverb,*,*,*,Besondere,Kontinuierlicher Typ,Ist,De,De',
                             'Gibt es\t Hilfsverb,*,*,*,Fünf Schritte, La Linie Al,Grundform,Gibt es,Al,Al',
                             '。\t Symbol,Phrase,*,*,*,*,。,。,。']
    """
    with open(fpath, mode="rt", encoding="utf-8") as f:
        sentences = f.read().split("EOS\n")
    return [sent.strip().split("\n") for sent in sentences if sent.strip() != ""]


class Morph:
    """Morph information for each token.

    Args:
        data (dict): A dictionary contains necessary information.

    Attributes:
        surface (str):Oberfläche
        base (str):Base
        pos (str):Teil (Basis)
        pos1 (str):Teil Teil Unterklassifizierung 1 (pos1)
    """

    def __init__(self, data):
        self.surface = data["surface"]
        self.base = data["base"]
        self.pos = data["pos"]
        self.pos1 = data["pos1"]

    def __repr__(self):
        return f"Morph({self.surface})"

    def __str__(self):
        return "surface[{}]\tbase[{}]\tpos[{}]\tpos1[{}]".format(
            self.surface, self.base, self.pos, self.pos1
        )


class Chunk:
    """Containing information for Clause/phrase.

    Args:
        data (dict): A dictionary contains necessary information.

    Attributes:
        chunk_id (str): The number of clause chunk (Phrasennummer).
        morphs List[Morph]: Morph (Morphem) list.
        dst (str): The index of dependency target (Indexnummer der Kontaktklausel).
        srcs (List[str]): The index list of dependency source. (Original-Klauselindexnummer).
    """

    def __init__(self, chunk_id, dst):
        self.id = chunk_id
        self.morphs = []
        self.dst = dst
        self.srcs = []

    def __repr__(self):
        return "Chunk( id: {}, dst: {}, srcs: {}, morphs: {} )".format(
            self.id, self.dst, self.srcs, self.morphs
        )

    def get_surface(self) -> str:
        """Concatenate morph surfaces in a chink.

        Args:
            chunk (Chunk): e.g. Chunk( id: 0, dst: 5, srcs: [], morphs: [Morph(ich), Morph(Ist)]
        Return:
            e.g. 'ich bin'
        """
        morphs = self.morphs
        res = ""
        for morph in morphs:
            if morph.pos != "Symbol":
                res += morph.surface
        return res

    def validate_pos(self, pos: str) -> bool:
        """Return Ture if 'Substantiv' or 'Verb' in chunk's morphs. Otherwise, return False."""
        morphs = self.morphs
        return any([morph.pos == pos for morph in morphs])


def convert_sent_to_chunks(sent: List[str]) -> List[Morph]:
    """Extract word and convert to morph.

    Args:
        sent (List[str]): A sentence contains a word list.
                            e.g. sent:
                               ['* 0 1D 0/1 0.000000',
                                'ich\t Substantiv,Gleichbedeutend,Allgemeines,*,*,*,ich,Wagahai,Wagahai',
                                'Ist\t Assistent,Hilfe,*,*,*,*,Ist,C.,Beeindruckend',
                                '* 1 -1D 0/2 0.000000',
                                'Katze\t Substantiv,Allgemeines,*,*,*,*,Katze,Katze,Katze',
                                'damit\t Hilfsverb,*,*,*,Besondere,Kontinuierlicher Typ,Ist,De,De',
                                'Gibt es\t Hilfsverb,*,*,*,Fünf Schritte, La Linie Al,Grundform,Gibt es,Al,Al',
                                '。\t Symbol,Phrase,*,*,*,*,。,。,。']

    Parsing format:
        e.g. "* 0 1D 0/1 0.000000"
        |Säule|Bedeutung|
        | :----: | :----------------------------------------------------------- |
        |   1    |Die erste Spalte ist`*`.. Zeigt an, dass es sich um ein Ergebnis der Abhängigkeitsanalyse handelt.|
        |   2    |Phrasennummer (Ganzzahl ab 0)|
        |   3    |Kontaktnummer +`D`                                              |
        |   4    |Hauptadresse/Funktionswortposition und beliebig viele Identitätsspalten|
        |   5    |Verlobungspunktzahl. Im Allgemeinen ist es umso einfacher, sich zu engagieren, je größer der Wert ist.|

    Returns:
        List[Chunk]: List of chunks.
    """
    chunks = []
    chunk = None
    srcs = defaultdict(list)

    for i, word in enumerate(sent):
        if word[0] == "*":
            # Add chunk to chunks
            if chunk is not None:
                chunks.append(chunk)

            # eNw Chunk beggin
            chunk_id = word.split(" ")[1]
            dst = word.split(" ")[2].rstrip("D")
            chunk = Chunk(chunk_id, dst)
            srcs[dst].append(chunk_id)  # Add target->source to mapping list

        else:  # Add Morch to chunk.morphs
            features = word.split(",")
            dic = {
                "surface": features[0].split("\t")[0],
                "base": features[6],
                "pos": features[0].split("\t")[1],
                "pos1": features[1],
            }
            chunk.morphs.append(Morph(dic))

            if i == len(sent) - 1:  # Add the last chunk
                chunks.append(chunk)

    # Add srcs to each chunk
    for chunk in chunks:
        chunk.srcs = list(srcs[chunk.id])

    return chunks


def get_predicate_frame(chunks: List[Chunk]) -> List[dict]:
    """Get edges from sentence chunks.

    Terms:
        -Prädikat(predicate)
        -Artikel(argument)
        -Fall(case)

    Args:
        chunks (List[Chunk]): A sentence contains many chunks.
            e.g. [Chunk( id: 0, dst: 5, srcs: [], morphs: [Morph(ich), Morph(Ist)] ),
                  Chunk( id: 1, dst: 2, srcs: [], morphs: [Morph(Hier), Morph(damit)] ),
                  Chunk( id: 2, dst: 3, srcs: ['1'], morphs: [Morph(Start), Morph(Hand)] ),
                  Chunk( id: 3, dst: 4, srcs: ['2'], morphs: [Morph(Mensch), Morph(Das)] ),
                  Chunk( id: 4, dst: 5, srcs: ['3'], morphs: [Morph(Ding), Morph(Zu)] ),
                  Chunk( id: 5, dst: -1, srcs: ['0', '4'], morphs: [Morph(Sie sehen), Morph(Ta), Morph(。)] )]

    Returns:
        List[dict]: Predicate frame.
            e.g. [{'pred': 'Start', 'case': ['damit'], 'arg': ['ここdamit']},
                  {'pred': 'sehen', 'case': ['Ist', 'Zu'], 'arg': ['吾輩Ist', 'ものZu']}]
    """
    patterns = []
    for chunk in chunks:
        # Skip if not valid
        if len(chunk.srcs) == 0 or all([morph.pos != "Verb" for morph in chunk.morphs]):
            continue

        # Initialize
        pred_frame = {"pred": None, "case": [], "arg": []}

        # Get predicate
        for morph in chunk.morphs:
            if morph.pos == "Verb":
                pred_frame["pred"] = morph.base
                break

        # Get case
        for src in chunk.srcs:
            src_chunk = chunks[int(src)]
            for morph in src_chunk.morphs:
                if morph.pos == "Partikel":
                    pred_frame["case"].append(morph.base)
                    pred_frame["arg"].append(src_chunk.get_surface())

        # Add to patterns
        patterns.append(pred_frame)
    return patterns


def write_to_file(sents, path):
    """Write patterns to file.

    Args:
        pattern_sents ([type]): predicate-case patterns.
            e.g. [[{'pred': 'Geboren', 'case': ['damit'], 'arg': ['どこdamit']},
                   {'pred': 'Tsukuri', 'case': ['Oder', 'Aber'], 'arg': ['生れたOder', '見当Aber']}],
                  [{'pred': 'Schrei', 'case': ['damit'], 'arg': ['所damit']},
                   {'pred': 'Machen', 'case': ['Hand', 'Nur', 'Ist'], 'arg': ['泣いHand', 'いた事NurIst', 'いた事NurIst']}]]
    """
    # convert_frame_to_text
    lines = []
    for sent in sents:
        for frame in sent:  # pattern: {'pred': 'Schrei', 'case': ['damit'], 'arg': ['所damit']}
            case_text = " ".join(frame["case"])
            arg_text = " ".join(frame["arg"])
            lines.append((frame["pred"], case_text, arg_text))

    # write_to_file
    with open(path, "w") as f:
        for line in lines:
            f.write(f"{line[0]}\t{line[1]}\t{line[2]}\n")


fpath = "neko.txt.cabocha"
sentences = read_file(fpath)
sentences = [convert_sent_to_chunks(sent) for sent in sentences]  # ans41

# ans46
pattern_sents = [get_predicate_frame(sent) for sent in sentences]
pattern_sents = list(filter(lambda x: len(x) != 0, pattern_sents))
write_to_file(pattern_sents, "predicate_frame.txt")

# "predicate_frame.txt":
#Wo man geboren wird
#Ich habe keine Ahnung, ob es geboren wurde
#Wo man weinen kann
#Das einzige, was ich weinte, war das einzige, was ich weinte
#Fang hier an
#Sehen Sie, was ich sehe
#Hör später zu
#Fang uns

Recommended Posts

100 Sprachverarbeitungsklopfen 03 ~ 05
100 Sprachverarbeitungsklopfen (2020): 40
100 Sprachverarbeitungsklopfen (2020): 32
100 Sprachverarbeitungsklopfen (2020): 35
100 Sprachverarbeitungsklopfen (2020): 47
100 Sprachverarbeitungsklopfen (2020): 39
100 Sprachverarbeitungsklopfen (2020): 22
100 Sprachverarbeitungsklopfen (2020): 42
100 Sprachverarbeitungsklopfen (2020): 29
100 Sprachverarbeitungsklopfen (2020): 49
100 Sprachverarbeitungsklopfen (2020): 45
100 Sprachverarbeitungsklopfen (2020): 10-19
100 Sprachverarbeitungsklopfen (2020): 30
100 Sprachverarbeitungsklopfen (2020): 00-09
100 Sprachverarbeitungsklopfen (2020): 48
100 Sprachverarbeitungsklopfen (2020): 44
100 Sprachverarbeitungsklopfen (2020): 41
100 Sprachverarbeitungsklopfen (2020): 25
100 Sprachverarbeitungsklopfen (2020): 23
100 Sprachverarbeitungsklopfen (2020): 33
100 Sprachverarbeitungsklopfen (2020): 20
100 Sprachverarbeitungsklopfen (2020): 27
100 Sprachverarbeitungsklopfen (2020): 46
100 Sprachverarbeitungsklopfen (2020): 21
100 Sprachverarbeitungsklopfen (2020): 36
100 Amateur-Sprachverarbeitungsklopfen: 41
100 Amateur-Sprachverarbeitungsklopfen: 71
100 Amateur-Sprachverarbeitungsklopfen: 56
100 Amateur-Sprachverarbeitungsklopfen: 24
100 Amateur-Sprachverarbeitungsklopfen: 59
100 Amateur-Sprachverarbeitungsklopfen: 70
100 Amateur-Sprachverarbeitungsklopfen: 60
100 Amateur-Sprachverarbeitungsklopfen: 92
100 Amateur-Sprachverarbeitungsklopfen: 30
100 Amateur-Sprachverarbeitungsklopfen: 06
100 Amateur-Sprachverarbeitungsklopfen: 84
100 Amateur-Sprachverarbeitungsklopfen: 81
100 Amateur-Sprachverarbeitungsklopfen: 33
100 Amateur-Sprachverarbeitungsklopfen: 40
100 Amateur-Sprachverarbeitungsklopfen: 45
100 Amateur-Sprachverarbeitungsklopfen: 43
100 Amateur-Sprachverarbeitungsklopfen: 55
100 Amateur-Sprachverarbeitungsklopfen: 22
100 Amateur-Sprachverarbeitungsklopfen: 61
100 Amateur-Sprachverarbeitungsklopfen: 94
100 Amateur-Sprachverarbeitungsklopfen: 54
100 Amateur-Sprachverarbeitungsklopfen: 04
100 Amateur-Sprachverarbeitungsklopfen: 63
100 Amateur-Sprachverarbeitungsklopfen: 12
100 Amateur-Sprachverarbeitungsklopfen: 14
100 Amateur-Sprachverarbeitungsklopfen: 08
100 Amateur-Sprachverarbeitungsklopfen: 42
100 Sprachverarbeitungsklopfen ~ Kapitel 1
100 Amateur-Sprachverarbeitungsklopfen: 19
100 Amateur-Sprachverarbeitungsklopfen: 73
100 Amateur-Sprachverarbeitungsklopfen: 75
100 Amateur-Sprachverarbeitungsklopfen: 98
100 Amateur-Sprachverarbeitungsklopfen: 83
100 Amateur-Sprachverarbeitungsklopfen: 95
100 Amateur-Sprachverarbeitungsklopfen: 32
100 Amateur-Sprachverarbeitungsklopfen: 96