Wenn ich täglich Code schreibe, schreibe oder suche ich oft immer wieder nach demselben Inhalt. Wenn Sie in einem solchen Fall ein Snippet registrieren, können Sie es mit weniger Aufwand eingeben, und die Codierung ist schneller. Dieses Mal werde ich Snippets vorstellen, die bei der Analyse von Daten nützlich sind.
Im Folgenden erfahren Sie, wie Sie ein Snippet mit VS-Code registrieren.
Erstellen Sie Snippets für die folgenden Bibliotheken.
snippets/python.json
{
"lgb": {
"prefix": [
"lgb",
"import lightgbm as lgb"
],
"body": "import lightgbm as lgb",
"description": "Import LightGBM"
},
"np": {
"prefix": [
"np",
"import numpy as np"
],
"body": "import numpy as np",
"description": "Import Numpy"
},
"pd": {
"prefix": [
"pd",
"import pandas as pd"
],
"body": "import pandas as pd",
"description": "Import Pandas"
},
"plt": {
"prefix": [
"plt",
"import matplotlib.pyplot as plt",
"from matplotlib import ..."
],
"body": "from matplotlib import pyplot as plt",
"description": "Import Matplotlib"
},
"sns": {
"prefix": [
"sns",
"import seaborn as sns"
],
"body": "import seaborn as sns",
"description": "Import seaborn"
},
"joblib.dump": {
"prefix": [
"joblib.dump",
"from joblib import dump"
],
"body": "from joblib import dump",
"description": "Import `dump` in Joblib"
},
"joblib.load": {
"prefix": [
"joblib.load",
"from joblib import load"
],
"body": "from joblib import load",
"description": "Import `load` in Joblib"
},
"sklearn.compose.make_column_transformer": {
"prefix": [
"sklearn.compose.make_column_transformer",
"from sklearn.compose import ..."
],
"body": "from sklearn.compose import make_column_transformer",
"description": "Import `make_column_transformer` in scikit-learn"
},
"sklearn.datasets.load_*": {
"prefix": [
"sklearn.datasets.load_*",
"from sklearn.datasets import ..."
],
"body": "from sklearn.datasets import ${1:load_iris}",
"description": "Import a function that loads a dataset"
},
"sklearn.pipeline.make_pipeline": {
"prefix": [
"sklearn.pipeline.make_pipeline",
"from sklearn.pipeline import ..."
],
"body": "from sklearn.pipeline import make_pipeline",
"description": "Import `make_pipeline` in scikit-learn"
},
"logger = ...": {
"prefix": "logger = ...",
"body": "logger = logging.getLogger(${1:__name__})",
"description": "Get a logger"
},
"dtrain = ...": {
"prefix": "dtrain = ...",
"body": "dtrain = lgb.Dataset(${1:X}, label=${2:y})",
"description": "Create a LightGBM dataset instance"
},
"booster = ...": {
"prefix": "booster = ...",
"body": [
"booster = lgb.train(",
"\t${1:params},",
"\t${2:dtrain},",
"\t${3:# **kwargs}",
")"
],
"description": "Train a LightGBM booster"
},
"ax = ...": {
"prefix": "ax = ...",
"body": [
"ax = lgb.plot_importance(",
"\t${1:booster},",
"\t${2:# **kwargs}",
")"
],
"description": "Plot feature importances"
},
"f, ax = ...": {
"prefix": "f, ax = ...",
"body": "f, ax = plt.subplots(figsize=${1:(8, 6)})",
"description": "Create a figure and a set of subplots"
},
"df = ...": {
"prefix": "df = ...",
"body": [
"df = pd.read_csv(",
"\t${1:filepath_or_buffer},",
"\t${2:# **kwargs}",
")"
],
"description": "Read a csv file into a Pandas dataFrame"
},
"description = ...": {
"prefix": "description = ...",
"body": "description = ${1:df}.describe(include=${2:\"all\"})",
"description": "Create a Pandas dataframe description"
},
"with pd.option_context(...": {
"prefix": "with pd.option_context(...",
"body": [
"with.pd.option_context(",
"\t\"display.max_rows\",",
"\t${1:None},",
"\t\"display.max_columns\",",
"\t${2:None},",
"):",
"\tdisplay(${3:pass})"
],
"description": "Set temporarily Pandas options"
},
"X, y = ...": {
"prefix": "X, y = ...",
"body": "X, y = ${1:load_iris}(return_X_y=True)",
"description": "Load and return the dataset"
},
"X_train, X_test, ...": {
"prefix": "X_train, X_test, ...",
"body": [
"X_train, X_test, y_train, y_test = train_test_split(",
"\tX,",
"\ty,",
"\trandom_state=${1:0},",
"\tshuffle=${2:True},",
")"
],
"description": "Split arrays into train and test subsets"
},
"estimator = BaseEstimator(...": {
"prefix": "estimator = BaseEstimator(...",
"body": [
"estimator = ${1:BaseEstimator}(",
"\t${2:# **params}",
")"
],
"description": "Create an scikit-learn estimator instance"
},
"estimator = make_pipeline(...": {
"prefix": "estimator = make_pipeline(...",
"body": [
"estimator = make_pipeline(",
"\t${1:estimator},",
"\t${2:# *steps}",
")"
],
"description": "Create a scikit-learn pipeline instance"
},
"estimator = make_column_transformer(...": {
"prefix": "estimator = make_column_transformer(...",
"body": [
"estimator = make_column_transformer(",
"\t(${1:estimator}, ${2:columns}),",
"\t${3:# *transformers}",
")"
],
"description": "Create a scikit-learn column transformer instance"
},
"estimator.fit(...": {
"prefix": "estimator.fit(...",
"body": [
"${1:estimator}.fit(",
"\t${2:X},",
"\ty=${3:y},",
"\t${4:# **fit_params}",
")"
],
"description": "Fit the estimator according to the given training data"
},
"dump(...": {
"prefix": "dump(...",
"body": "dump(${1:estimator}, ${2:filename}, compress=${3:0})",
"description": "Save the estimator"
},
"estimator = load(...": {
"prefix": "estimator = load(...",
"body": "estimator = load(${1:filename})",
"description": "Load the estimator"
},
"y_pred = ...": {
"prefix": "y_pred = ...",
"body": "y_pred = ${1:estimator}.predict(${2:X})",
"description": "Predict using the fitted model"
},
"X = ...": {
"prefix": "X = ...",
"body": "X = ${1:estimator}.transform(${2:X})",
"description": "Transform the data"
}
}
Wenn Sie ein neues Snippet erstellen, werde ich es von Zeit zu Zeit aktualisieren.
Recommended Posts