Depuis la dernière fois, j'écris un article pour créer un réseau de neurones en utilisant Chainer, qui est un cadre d'apprentissage en profondeur. Cette fois
Préparation des données
Description du modèle
Optimisation des paramètres d'algorithme
Apprentissage
Sortie de résultat De
Préparation des données
Je vais écrire sur.
Cette fois, les données Iris sont utilisées comme données d'exemple. Il semble que les données Iris soient souvent utilisées dans l'apprentissage automatique. Ces données Iris peuvent être facilement introduites à partir de la bibliothèque d'apprentissage automatique de Python scikit-learn. scikit-learn lui-même peut être installé avec pip.
$ pip install scikit-learn
D'ailleurs, à compter du 18 novembre 2016, comme condition pour installer scicit-learn
Python (>= 2.6 or >= 3.3),
NumPy (>= 1.6.1),
SciPy (>= 0.9).
Doit être.
Le contenu de ces données Iris est un vecteur à 4 dimensions. Vérifions le contenu.
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> iris
>>> iris
{'target_names': array(['setosa', 'versicolor', 'virginica'],
dtype='<U10'), 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]), 'feature_names': ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'], 'data': array([[ 5.1, 3.5, 1.4, 0.2],
[ 4.9, 3. , 1.4, 0.2],
[ 4.7, 3.2, 1.3, 0.2],
[ 4.6, 3.1, 1.5, 0.2],
[ 5. , 3.6, 1.4, 0.2],
[ 5.4, 3.9, 1.7, 0.4],
[ 4.6, 3.4, 1.4, 0.3],
[ 5. , 3.4, 1.5, 0.2],
[ 4.4, 2.9, 1.4, 0.2],
[ 4.9, 3.1, 1.5, 0.1],
[ 5.4, 3.7, 1.5, 0.2],
[ 4.8, 3.4, 1.6, 0.2],
[ 4.8, 3. , 1.4, 0.1],
[ 4.3, 3. , 1.1, 0.1],
[ 5.8, 4. , 1.2, 0.2],
[ 5.7, 4.4, 1.5, 0.4],
[ 5.4, 3.9, 1.3, 0.4],
[ 5.1, 3.5, 1.4, 0.3 .................
Il y a plusieurs choses, mais pour le moment, nous avons besoin de données et de cibles.
>>> iris.data
array([[ 5.1, 3.5, 1.4, 0.2],
[ 4.9, 3. , 1.4, 0.2],
[ 4.7, 3.2, 1.3, 0.2],
[ 4.6, 3.1, 1.5, 0.2],
[ 5. , 3.6, 1.4, 0.2],
[ 5.4, 3.9, 1.7, 0.4],
[ 4.6, 3.4, 1.4, 0.3],
[ 5. , 3.4, 1.5, 0.2],
[ 4.4, 2.9, 1.4, 0.2],
[ 4.9, 3.1, 1.5, 0.1],
[ 5.4, 3.7, 1.5, 0.2],
[ 4.8, 3.4, 1.6, 0.2],
[ 4.8, 3. , 1.4, 0.1],
[ 4.3, 3. , 1.1, 0.1],
[ 5.8, 4. , 1.2, 0.2],...........
>>> iris.target
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
les données sont un vecteur à 4 dimensions, chacun -Longueur pétale -Largeur pétale -La longueur de la pièce -Largeur de la pièce est.
La cible correspondante est le type d'iris. Chaque -setosa
-versicolor
-virginica
est.
Je pense que j'ai en quelque sorte l'image.
L'apprentissage automatique nécessite des données de l'enseignant pour enseigner au classificateur les caractéristiques des données et les données de test pour mesurer la précision du classificateur terminé. La division des données préparées de cette manière en données d'enseignants et données de test et la vérification de la validité s'appelle la validation croisée.
Il s'agit d'un état dans lequel les types de vecteurs d'iris à 4 dimensions sont associés à 0, 1 et 2 étiquettes.
>>>iris.data
array([[ 5.1, 3.5, 1.4, 0.2],
[ 4.9, 3. , 1.4, 0.2],
[ 4.7, 3.2, 1.3, 0.2],......
>>>iris.target
array([0, 0, 0,.....
Puisqu'il est nécessaire de vectoriser la cible pour entraîner le réseau neuronal, nous allons la traiter. Autrement dit, si l'iris est setosa [1, 0, 0] ça ira. Si l'iris est versicolor C'est [0, 1, 0]. Mettez 1 dans la bonne dimension.
>>>n = y.size
>>>y.zeros(n * 3).reshape(n, 3).astype(np.float32)
array([[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]])
Maintenant que le conteneur est prêt, nous ajouterons la valeur.
>>>for i in range(n):
y2[i, y[i]] = 1.0
>>> y2
array([[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.],
[ 0., 0., 1.]], dtype=float32)
Puisqu'il y a 150 éléments pour les données et la cible, préparez un index.
>>>index = np.arange(n)
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
143, 144, 145, 146, 147, 148, 149])
Les éléments impairs du tableau d'index sont les données de l'enseignant et les éléments pairs sont les données de test.
>>>xtrain = x[index[index % 2 != 0], :]
>>>ytrain = y2[index[index % 2 != 0], :]
>>>xtest = x[index[index % 2 == 0], :]
>>>ytest = y2[index[index % 2 == 0], :]
De cette manière, les données sont préparées en tant que données correspondantes. Jusqu'à ici pour cette fois
Takayoshi Yamashita Apprentissage profond du Kodansha visible sur l'illustration Hiroyuki Shinno Apprentissage en profondeur pratique avec Chainer-Comment implémenter des NN-Ohm complexes
Recommended Posts