Liste des opérations de tableau (ndarray) de la bibliothèque de calcul numérique de Python "Numpy"

La méthode d'opération de l'objet de tableau à N dimensions (ci-après, ndarray) fourni par la bibliothèque de calcul numérique de Python "Numpy" est organisée. Python est lent à calculer en raison du manque de prise en charge des types de données, et il est standard d'utiliser ndarray lors du calcul avec une grande quantité de données.

supposition

import numpy as np

A. Génération de séquence

Générez un ndarray.

array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0)

y = np.array([1,2,3])
X = np.array([[1,2,3], [4,5,6]], dtype=np.int64)

zeros(shape, dtype=float, order='C')

y = np.zeros(3)
# array([0., 0., 0.])

X = np.zeros((2,3))
# array([[0., 0., 0.],
#       [0., 0., 0.]])

ones(shape, dtype=None, order='C')

y = np.ones(3)
# array([1., 1., 1.])

X = np.ones((2,3))
# array([[1., 1., 1.],
#       [1., 1., 1.]])

empty(shape, dtype=None, order='C')

y = np.empty(3)
# array([0.39215686, 0.70980392, 0.80392157])

X = np.empty((2,3))
# array([[2.6885677e-316, 0.0000000e+000, 0.0000000e+000],
#       [0.0000000e+000, 0.0000000e+000, 0.0000000e+000]])

identity(n, dtype=None)

X = np.identity(3)
# array([[1., 0., 0.],
#       [0., 1., 0.],
#       [0., 0., 1.]])

arange([start,] stop[, step,], dtype=None)

y = np.arange(5)
# array([0, 1, 2, 3, 4])

y = np.arange(2,5)
# array([2, 3, 4])

y = np.arange(5,2,-1)
# array([5, 4, 3])  

linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)

y = np.linspace(2,10,3)
# array([ 2.,  6., 10.])

y = np.linspace(2,10,5)
# array([ 2.,  4.,  6.,  8., 10.])

unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None)

y = np.unique(['C', 'E', 'C', 'A', 'B', 'E', 'D', 'C'])
# array(['A', 'B', 'C', 'D', 'E'], dtype='<U1')

B. Obtenir des éléments de tableau

Les éléments de ndarray peuvent être obtenus de la même manière que Get List Elements in Python. Cependant, notez que la méthode de spécification change pour les tableaux multidimensionnels.

X = [[1,2,3],[4,5,6]]
print(X[1][2])
# 6

X_numpy = np.array(X)
print(X_numpy[1,2])
# 6 

En plus de la méthode d'acquisition habituelle, il peut également être acquis par la méthode suivante.

1. Obtenez un tableau d'index.

X = np.array([[1,2,3],[4,5,6]])

print(X[[0,1,-1]])
# [[1 2 3],
#  [4 5 6],
#  [4 5 6]]

print(X[[0,1,-1], 0])
# [1, 4, 4]

print(X[[0,1,-1], ::-1])
# [[3 2 1],
#  [6 5 4],
#  [6 5 4]]

print(X[[0,1,-1],[1,0,-1]])
# [2, 4, 6]
"""
* Cette désignation a le même résultat que la suivante.
np.array([X[0,1], X[1,0], X[-1,-1]])
"""

2. Obtenez avec une expression conditionnelle.

X = np.array([[1,2,3],[4,5,6]])

print(X > 4)
#  [[False, False, False],
#  [False,  True,  True]]

print(np.where(X > 4))
# (array([1, 1]), array([1, 2]))

print(X[X > 4])
# [5, 6]

print(X[np.where(X > 4)])
# [5, 6]

C. Obtenir des informations sur la séquence

Obtenez des informations sur ndarray.

shape

X = np.array([[1,2,3], [4,5,6]])
X.shape
# (2, 3)

dtype

X = np.array([[1,2,3], [4,5,6]])
X.dtype
# dtype('int64')

ndim

X = np.array([[1,2,3], [4,5,6]])
X.ndim
# 2

size

X = np.array([[1,2,3], [4,5,6]])
X.size
# 6

D. Manipulation des tableaux

Manipulez le ndarray.

<ndarray>.flatten(order='C')

X = np.array([[1,2,3], [4,5,6]])
print(X.flatten())
# [1, 2, 3, 4, 5, 6]

<ndarray>.reshape(shape, order='C')

X = np.array([1,2,3,4,5,6])
print(X.reshape((3,2)))
# [[1, 2],
#  [3, 4],
#  [5, 6]]

sort(a, axis=-1, kind='quicksort', order=None)

X1 = np.array([[5,4,6], [3,1,2]])
X2 = np.sort(X1)
print(X1)
# [[5 4 6]
#  [3 1 2]]
print(X2)
# [[4 5 6]
#  [1 2 3]]

X3 = np.sort(X1, axis=0)
print(X3)
# [[3 1 2]
# [5 4 6]]

<ndarray>.sort(axis=-1, kind='quicksort', order=None)

X = np.array([[5,4,6], [3,1,2]])

X.sort()
print(X)
# [4 5 6]
# [1 2 3]]

X.sort(axis=0)
print(X)
# [[3 1 2]
# [5 4 6]]

<ndarray>.argsort(axis=-1, kind='quicksort', order=None)

X = np.array([[5,4,6], [3,1,2]])

idxs = X.argsort()
print(idxs)
# [[1 0 2]
#  [1 2 0]]

idxs = X.argsort(axis=0)
print(idxs)
# [[1 1 1]
# [0 0 0]]

<ndarray>.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

X = np.array([[1,2,3], [4,5,6]])
print(X.dtype)
# int64
print(X)
# [[1 2 3]
# [4 5 6]]

X2 = X.astype(np.float64)
print(X2.dtype)
# float64
print(X2)
# [[1. 2. 3.]
# [4. 5. 6.]]

E. Fonctionnement de la matrice

Effectuez des opérations matricielles avec ndarray.

<ndarray>.T

X = np.array([[1,2,3], [4,5,6]])
print(X.T)
# [[1, 4],
#  [2, 5],
#  [3, 6]]

numpy.dot】【<ndarray>.dot

X1 = np.array([[1, 2, 3], [4, 5, 6]])
X2 = np.array([[10, 20], [100, 200], [1000, 2000]])
print(np.dot(X1, X2))
# [[ 3210  6420]
#  [ 6540 13080]]

print(X1.dot(X2))
# [[ 3210  6420]
#  [ 6540 13080]]

numpy.trace】【<ndarray>.trace

X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(np.trace(X))
# 15

print(X.trace())
# 15

numpy.linalg.det

X1 = np.array([[3., 2.], [5., 4.]])
print(np.linalg.det(X1))
# 2.0000000000000013

numpy.linalg.eig

X = np.array([[2, 0], [0, 0.25]])
print(np.linalg.eig(X))
# (array([2.  , 0.25]), array([[1., 0.], [0., 1.]]))

numpy.linalg.svd

X = np.array([[2, 0], [0, 0.25], [0, 1]])
print(np.linalg.svd(X))
# (array([[ 1.,  0.        ,  0.        ],
#         [ 0., -0.24253563, -0.9701425 ],
#         [ 0., -0.9701425 ,  0.24253563]]), 
#  array([2., 1.03077641]), 
#  array([[ 1.,  0.],
#         [-0., -1.]]))

numpy.linalg.inv

X = np.array([[1, 1], [1, -1]])
print(np.linalg.inv(X))
# [[ 0.5  0.5]
#  [ 0.5 -0.5]]

numpy.linalg.pinv

X = np.array([[1, 1], [1, -1], [1, 0]])
print(np.linalg.pinv(X))
# [[ 0.33333333  0.33333333  0.33333333]
#  [ 0.5        -0.5         0.        ]]

numpy.linalg.qr

X = np.array([[1, 2], [3, 4], [5, 6]])
print(np.linalg.qr(X))
# (array([[-0.16903085,  0.89708523],
#         [-0.50709255,  0.27602622],
#         [-0.84515425, -0.34503278]]),
#  array([[-5.91607978, -7.43735744],
#         [ 0.        ,  0.82807867]]))

F. Arithmétique

Les opérations arithmétiques sont effectuées entre deux ndarrays.

add

a = np.array([[1, 2, 3], [4, 5, 6]])

print(np.add(a, 10))
# [[11 12 13]
#  [14 15 16]]
print(a + 10)
# [[11 12 13]
#  [14 15 16]]

print(np.add(a, [10, 20, 30]))
# [[11 22 33]
#  [14 25 36]]
print(a + [10, 20, 30])
# [[11 22 33]
#  [14 25 36]]

print(np.add(a, np.array([[10, 20, 30], [40, 50, 60]])))
# [[11 22 33]
#  [44 55 66]]
print(a + np.array([[10, 20, 30], [40, 50, 60]]))
# [[11 22 33]
#  [44 55 66]]

subtract

a = np.array([[11, 22, 33], [44, 55, 66]])

print(np.subtract(a, 10))
# [[ 1 12 23]
#  [34 45 56]]
print(a - 10)
# [[ 1 12 23]
#  [34 45 56]]

print(np.subtract(a, [10, 20, 30]))
# [[ 1  2  3]
#  [34 35 36]]
print(a - [10, 20, 30])
# [[ 1  2  3]
#  [34 35 36]]

print(np.subtract(a, np.array([[10, 20, 30], [40, 50, 60]])))
# [[1 2 3]
#  [4 5 6]] 
print(a - np.array([[10, 20, 30], [40, 50, 60]]))
# [[1 2 3]
#  [4 5 6]]

multiply

a = np.array([[1, 2, 3], [4, 5, 6]])

print(np.multiply(a, 10))
# [[10 20 30]
#  [40 50 60]]
print(a * 10)
# [[10 20 30]
#  [40 50 60]]

print(np.multiply(a, [10, 20, 30]))
# [[ 10  40  90]
#  [ 40 100 180]]
print(a * [10, 20, 30])
# [[ 10  40  90]
#  [ 40 100 180]]

print(np.multiply(a, np.array([[10, 20, 30], [40, 50, 60]])))
# [[ 10  40  90]
#  [160 250 360]]
print(a * np.array([[10, 20, 30], [40, 50, 60]]))
# [[ 10  40  90]
#  [160 250 360]]

divide

a = np.array([[10, 20, 30], [40, 50, 60]])

print(np.divide(a, 10))
# [[1. 2. 3.]
#  [4. 5. 6.]]
print(a / 10)
# [[1. 2. 3.]
#  [4. 5. 6.]]

print(np.divide(a, [10, 20, 30]))
# [[1.  1.  1. ]
#  [4.  2.5 2. ]]
print(a / [10, 20, 30])
# [[1.  1.  1. ]
#  [4.  2.5 2. ]]

print(np.divide(a, np.array([[10, 20, 30], [40, 50, 60]])))
# [[1. 1. 1.]
#  [1. 1. 1.]]
print(a / np.array([[10, 20, 30], [40, 50, 60]]))
# [[1. 1. 1.]
#  [1. 1. 1.]]

floor_divide

a = np.array([[22, 33, 44], [45, 67, 89]])

print(np.floor_divide(a, 2))
# [[11 16 22]
#  [22 33 44]]
print(a // 2)
# [[11 16 22]
#  [22 33 44]]

print(np.floor_divide(a, [2, 3, 4]))
# [[11 11 11]
#  [22 22 22]]
print(a // [2, 3, 4])
# [[11 11 11]
#  [22 22 22]]

print(np.floor_divide(a, np.array([[2, 3, 4], [4, 6, 8]])))
# [[11 11 11]
#  [11 11 11]]
print(a // np.array([[[2, 3, 4], [4, 6, 8]]]))
# [[11 11 11]
#  [11 11 11]]

mod

a = np.array([[22, 33, 44], [45, 67, 89]])

print(np.mod(a, 2))
# [[0 1 0]
#  [1 1 1]]
print(a % 2)
# [[0 1 0]
#  [1 1 1]]

print(np.mod(a, [2, 3, 4]))
# [[0 0 0]
#  [1 1 1]]
print(a % [2, 3, 4])
# [[0 0 0]
#  [1 1 1]]

print(np.mod(a, np.array([[2, 3, 4], [4, 6, 8]])))
# [[0 0 0]
#  [1 1 1]]
print(a % np.array([[[2, 3, 4], [4, 6, 8]]]))
# [[0 0 0]
#  [1 1 1]]

power

a = np.array([[1, 2, 3], [4, 5, 6]])

print(np.power(a, 2))
# [[ 1  4  9]
#  [16 25 36]]
print(a ** 2)
# [[ 1  4  9]
#  [16 25 36]]

print(np.power(a, [2, 3, 4]))
# [[   1    8   81]
#  [  16  125 1296]]
print(a ** [2, 3, 4])
# [[   1    8   81]
#  [  16  125 1296]]

print(np.power(a, np.array([[2, 3, 4], [1/2, 1/3, 1/4]])))
# [[ 1.          8.         81.        ]
#  [ 2.          1.70997595  1.56508458]]
print(a ** np.array([[2, 3, 4], [1/2, 1/3, 1/4]]))
# [[ 1.          8.         81.        ]
#  [ 2.          1.70997595  1.56508458]]

G. Calcul comparatif

Comparez deux ndarrays.

greater

a1 = np.array([10, 10, 10, 10, 10])
a2 = np.array([9, 9.9, 10, 10.1, 11])

print(np.greater(a1, a2))
# [ True  True False False False]
print(a1 > a2)
# [ True  True False False False]

greater_equal

a1 = np.array([10, 10, 10, 10, 10])
a2 = np.array([9, 9.9, 10, 10.1, 11])

print(np.greater_equal(a1, a2))
# [ True  True True False False]
print(a1 >= a2)
# [ True  True True False False]

less

a1 = np.array([10, 10, 10, 10, 10])
a2 = np.array([9, 9.9, 10, 10.1, 11])

print(np.less(a1, a2))
# [False False False  True  True]
print(a1 < a2)
# [False False False  True  True]

less_equal

a1 = np.array([10, 10, 10, 10, 10])
a2 = np.array([9, 9.9, 10, 10.1, 11])

print(np.less_equal(a1, a2))
# [False False  True  True  True]
print(a1 <= a2)
# [False False  True  True  True]

equal

a1 = np.array([10, 10, 10, 10, 10])
a2 = np.array([9, 9.9, 10, 10.1, 11])

print(np.equal(a1, a2))
# [False False  True False False]
print(a1 == a2)
# [False False  True False False]

not_equal

a1 = np.array([10, 10, 10, 10, 10])
a2 = np.array([9, 9.9, 10, 10.1, 11])

print(np.not_equal(a1, a2))
# [ True  True False  True  True]
print(a1 != a2)
# [ True  True False  True  True]

Opération logique

Effectuez des opérations logiques sur deux ndarrays.

logical_and

a1 = np.array([True, False, True, False])
a2 = np.array([True, False, False, True])

print(np.logical_and(a1, a2))
# [ True False False False]

logical_or

a1 = np.array([True, False, True, False])
a2 = np.array([True, False, False, True])

print(np.logical_or(a1, a2))
# [ True False  True  True]

logical_xor

a1 = np.array([True, False, True, False])
a2 = np.array([True, False, False, True])

print(np.logical_xor(a1, a2))
# [False False  True  True]

logical_not

a = np.array([True, False, True, False])

print(np.logical_not(a))
# [False  True False  True]

<ndarray>.any()

a1 = np.array([0, 1, 0, 0])
print(a1.any())
# True

a2 = np.array([1, 1, 1, 1])
print(a2.any())
# True

a3 = np.array([0, 0, 0, 0])
print(a3.any())
# False

<ndarray>.all()

a1 = np.array([0, 1, 0, 0])
print(a1.all())
# False

a2 = np.array([1, 1, 1, 1])
print(a2.all())
# True

a3 = np.array([0, 0, 0, 0])
print(a3.all())
# False

I. Réglez l'opération

Effectuez une opération de définition avec ndarray.

union1d(ar1, ar2)

X = np.unique([1,2,3,4,5,6])
Y = np.unique([4,5,6,7,8,9])

Z = np.union1d(X,Y)
print(Z)
# [1 2 3 4 5 6 7 8 9]

intersect1d(ar1, ar2)

X = np.unique([1,2,3,4,5,6])
Y = np.unique([4,5,6,7,8,9])

Z = np.intersect1d(X,Y)
print(Z)
# [4 5 6]

setxor1d(ar1, ar2)

X = np.unique([1,2,3,4,5,6])
Y = np.unique([4,5,6,7,8,9])

Z = np.setxor1d(X,Y)
print(Z)
# [1 2 3 7 8 9]

setdiff1d(ar1, ar2)

X = np.unique([1,2,3,4,5,6])
Y = np.unique([4,5,6,7,8,9])

Z = np.setdiff1d(X,Y)
print(Z)
# [1 2 3]

in1d(ar1, ar2)

X = np.unique([1,2,3,4,5])
Y = np.unique([1,2,3])

Z = np.in1d(X,Y)
print(Z)
# [ True  True  True False False]

J. Extraction maximum / minimum / code

Extrayez la valeur maximale, la valeur minimale et le code de ndarray.

maximum

a1 = np.array([4, 2, np.nan])
a2 = np.array([3, 6, 5])

print(np.maximum(a1, a2))
# [ 4.  6. nan]

fmax

a1 = np.array([4, 2, np.nan])
a2 = np.array([3, 6, 5])

print(np.fmax(a1, a2))
# [4. 6. 5.]

minimum

a1 = np.array([4, 2, np.nan])
a2 = np.array([3, 6, 5])

print(np.minimum(a1, a2))
# [ 3.  2. nan]

fmin

a1 = np.array([4, 2, np.nan])
a2 = np.array([3, 6, 5])

print(np.fmin(a1, a2))
# [3. 2. 5.]

copysign

a1 = np.array([1, 2, 3, 4, 5])
a2 = np.array([0, -1, 1, 2, -2])

print(np.copysign(a1, a2))
# [ 1. -2.  3.  4. -5.]

K. Arrondir / Arrondir / Arrondir

Pour chaque valeur de ndarray, traitez la valeur après la virgule décimale.

ceil(ndarray)

y = np.array([-5.6, -5.5, -5.4, 0, 5.4, 5.5, 5.6])

z = np.ceil(y)
print(z)
# [-5. -5. -5.  0.  6.  6.  6.]

floor(ndarray)

y = np.array([-5.6, -5.5, -5.4, 0, 5.4, 5.5, 5.6])

z = np.floor(y)
print(z)
# [-6. -6. -6.  0.  5.  5.  5.]

rint(ndarray)

y = np.array([-5.6, -5.5, -5.4, 0, 5.4, 5.5, 5.6])

z = np.rint(y)
print(z)
# [-6. -6. -5.  0.  5.  6.  6.]

modf(ndarray)

y = np.array([-3.6, -2.5, -1.4, 0, 1.4, 2.5, 3.6])

z = np.modf(y)
print(z)
# (array([-0.6, -0.5, -0.4,  0. ,  0.4,  0.5,  0.6]), array([-3., -2., -1.,  0.,  1.,  2.,  3.]))

L. Carré, racine carrée, valeur absolue

Calculez le carré, la racine carrée et la valeur absolue de chaque valeur de ndarray.

square(ndarray)

y = np.arange(1,6)

z = np.square(y)
print(z)
# [ 1  4  9 16 25]

z = y ** 2
print(z)
# [ 1  4  9 16 25]

sqrt(ndarray)

y = np.array([1,4,9,16,25])

z = np.sqrt(y)
print(z)
# [1. 2. 3. 4. 5.]

z = y ** 0.5
print(z)
# [1. 2. 3. 4. 5.]

abs(ndarray)

y = np.array([-1,-2,3,4,5j])

z = np.abs(y)
print(z)
# [1, 2, 3, 4, 5]

fabs(ndarray)

y = np.array([-1,-2,3,4,-5])

z = np.fabs(y)
print(z)
# [1, 2, 3, 4, 5]

M. Exposant / fonction logarithmique

Calculez l'exposant et la valeur logarithmique pour chaque valeur de ndarray.

exp(ndarray)

y = np.arange(1,6)

z = np.exp(y)
print(z)
# [  2.71828183   7.3890561   20.08553692  54.59815003 148.4131591 ]

print(np.e)
# 2.718281828459045

log(ndarray)

y = np.e ** np.array([1, 2, 3, 4, 5])

z = np.log(y)
print(z)
# [1. 2. 3. 4. 5.]

log10(ndarray)

y = 10 ** np.array([1, 2, 3, 4, 5])

z = np.log10(y)
print(z)
# [1. 2. 3. 4. 5.]

log2(ndarray)

y = 2 ** np.array([1, 2, 3, 4, 5])

z = np.log2(y)
print(z)
# [1. 2. 3. 4. 5.]

N. Fonction triangulaire

Appliquez une fonction triangulaire à chaque valeur de ndarray.

sin(ndarray)

y = np.linspace(-1, 1, 5)  * np.pi

print(np.sin(y))
# [-1.2246468e-16 -1.0000000e+00  0.0000000e+00  1.0000000e+00 1.2246468e-16]

cos(ndarray)

y = np.linspace(-1, 1, 5)  * np.pi

print(np.cos(y))
# [-1.000000e+00  6.123234e-17  1.000000e+00  6.123234e-17 -1.000000e+00]

tan(ndarray)

y = np.linspace(-1, 1, 5)  * np.pi

print(np.tan(y))
# [ 1.22464680e-16 -1.63312394e+16  0.00000000e+00  1.63312394e+16 -1.22464680e-16]

Fonction O. Bicurve

Appliquez une fonction bicurve à chaque valeur de ndarray.

sinh(ndarray)

y = np.array([-np.inf, -2, -1, 0, 1, 2, np.inf])

print(np.sinh(y))
# [-inf -3.62686041 -1.17520119  0. 1.17520119  3.62686041 inf]

cosh(ndarray)

y = np.array([-np.inf, -2, -1, 0, 1, 2, np.inf])

print(np.cosh(y))
# [inf 3.76219569 1.54308063 1. 1.54308063 3.76219569 inf]

tanh(ndarray)

y = np.array([-np.inf, -2, -1, 0, 1, 2, np.inf])

print(np.tanh(y))
# [-1. -0.96402758 -0.76159416  0. 0.76159416  0.96402758 1.]

P. Fonction de triangle inversé

Appliquez la fonction de triangle inverse à chaque valeur de ndarray.

arcsin(ndarray)

y = np.linspace(-1, 1, 5)

print(np.arcsin(y))
# [-1.57079633 -0.52359878  0. 0.52359878  1.57079633]

arccos(ndarray)

y = np.linspace(-1, 1, 5)

print(np.arccos(y))
# [3.14159265 2.0943951  1.57079633 1.04719755 0.]

arctan(ndarray)

y = np.linspace(-1, 1, 5)

print(np.arctan(y))
# [-0.78539816 -0.46364761  0. 0.46364761  0.78539816]

Q. Fonction de courbe inverse

Appliquez la fonction bicurve inverse à chaque valeur de ndarray.

arcsinh(ndarray)

y = np.array([-np.inf, -3.62686041, -1.17520119,  0., 1.17520119,  3.62686041, np.inf])

print(np.arcsinh(y))
# [-inf  -2.  -1.   0.   1.   2.  inf]

arccosh(ndarray)

y = np.array([1., 1.54308063, 3.76219569, np.inf])

print(np.arccosh(y))
# [ 0.  1.  2. inf]

arctanh(ndarray)

y = np.array([-1., -0.96402758, -0.76159416,  0., 0.76159416,  0.96402758, 1.])

print(np.arctanh(y))
# [-inf -2. -1.00000001 0. 1.00000001 2. inf]

R. Génération aléatoire

Générez des nombres aléatoires avec Numpy.

numpy.random.rand(d0, d1, ..., dn)

print(np.random.rand())
# 0.5504876218756463

print(np.random.rand(2))
# [0.70029403 0.48969378]

print(np.random.rand(2, 2))
# [[0.98181874 0.47001957]
#  [0.79277853 0.12536121]]

numpy.random.randint(low, high=None, size=None, dtype='l')

print(np.random.randint(1,4))
# 2

print(np.random.randint(1,4, 2))
# [2 2]

print(np.random.randint(1,4, (2, 2)))
# [[3 2]
#  [3 1]]

numpy.random.uniform(low=0.0, high=1.0, size=None)

print(np.random.uniform(1,4))
# 3.5515484791542056

print(np.random.uniform(1,4, 2))
# [1.51270014 3.02435494]

print(np.random.uniform(1,4, (2, 2)))
# [[3.47188029 1.17177563]
#  [3.87198389 3.91458379]]

numpy.random.randn(d0, d1, ..., dn)

print(np.random.randn())
# -0.5775065521096695

print(np.random.randn(2))
# [-1.50501689  1.46743032]

print(np.random.randn(2, 2))
# [[ 1.16357112 -0.24601519]
#  [ 2.07269576 -0.39272309]]

numpy.random.normal(loc=0.0, scale=1.0, size=None)

print(np.random.normal(50, 10))
# 63.47995333571061

print(np.random.normal(50, 10, (2, 2)))
# [[56.02364177 55.25423891]
#  [45.44840171 29.8303964 ]]

print(np.random.normal((50, 0), (10, 1), (5, 2)))
# [[45.48754234 -0.74792452]
#  [60.84696747  1.01209036]
#  [42.38844146 -0.10453915]
#  [39.77544056  1.22264549]
#  [41.60250782  1.64150462]]

numpy.random.binomial(n, p, size=None)

print(np.random.binomial(100, 0.5))
# 53

print(np.random.binomial(100, 0.5, (2, 2)))
# [[53 53]
#  [48 50]]

print(np.random.binomial((100, 1000), (0.3, 0.7), (5, 2)))
# [[ 33 699]
#  [ 30 660]
#  [ 34 698]
#  [ 26 688]
#  [ 25 683]]

numpy.random.beta(a, b, size=None)

print(np.random.beta(3, 5))
# 0.09838262724430759
 
print(np.random.beta(8, 2, (2, 2)))
# [[0.92800788 0.86391443]
#  [0.67249524 0.97299346]]
 
print(np.random.beta((3, 8), (5, 2), (5, 2)))
# [[0.11825463 0.74320634]
#  [0.24992266 0.79029969]
#  [0.13345269 0.57807883]
#  [0.32374525 0.92666103]
#  [0.64669681 0.84867388]]

numpy.random.chisquare(df, size=None)

print(np.random.chisquare(1))
# 0.05074259859574817
 
print(np.random.chisquare(5, (2, 2)))
# [[ 6.15617206  5.54859677]
#  [ 2.60704305 10.35079434]]
 
print(np.random.chisquare((1, 5), (5, 2)))
# [[2.3942405  6.43803251]
#  [1.97544231 2.73456762]
#  [0.63389405 7.81526263]
#  [0.05035459 7.8224598 ]
#  [1.01597309 1.46098368]]

numpy.random.gamma(shape, scale=1.0, size=None)

print(np.random.gamma(1, 2))
# 0.48471788864900295
 
print(np.random.gamma(9, 1, (2, 2)))
# [[10.71101589 16.68686166]
#  [ 5.22150652  5.87160223]]
 
print(np.random.gamma((1, 9), (2, 1), (5, 2)))
# [[ 3.4102224   6.31938602]
#  [ 0.03882968  7.71108072]
#  [ 2.62781738 10.70853193]
#  [ 5.07929584  5.83489052]
#  [ 1.50577929 11.21572879]]

S. Statistiques de base

Calculez les statistiques de base à partir de la valeur de ndarray.

max

a = np.array([10, 20, 30, 40, 50])
print(np.max(a))
# 50

argmax

a = np.array([10, 20, 30, 40, 50])
print(np.argmax(a))
# 4

min

a = np.array([10, 20, 30, 40, 50])
print(np.min(a))
# 10

argmin

a = np.array([10, 20, 30, 40, 50])
print(np.argmin(a))
# 0

sum

a = np.array([10, 20, 30, 40, 50])
print(np.sum(a))
# 150

mean

a = np.array([10, 20, 30, 40, 50])
print(np.mean(a))
# 30.0

var

a = np.array([10, 20, 30, 40, 50])
print(np.var(a))
# 200.0

std

a = np.array([10, 20, 30, 40, 50])
print(np.std(a))
# 14.142135623730951

cumsum

a = np.array([10, 20, 30, 40, 50])
print(np.cumsum(a))
# [ 10  30  60 100 150]

cumsum

a = np.array([10, 20, 30, 40, 50])
print(np.cumprod(a))
# [      10      200     6000   240000 12000000]

T. Processus de vérification

Effectue le traitement de vérification de la valeur.

isnan(ndarray)

y = np.array([np.nan, np.inf, 0, 1])

print(np.isnan(y))
# [ True False False False]

isfinite(ndarray)

y = np.array([np.nan, np.inf, -np.inf, 0, 1])

print(np.isfinite(y))
# [False False False  True  True]

isfin(ndarray)

y = np.array([np.nan, np.inf, -np.inf, 0, 1])

print(np.isinf(y))
# [False  True  True False False]

sign(ndarray)

y = np.array([-np.inf, -5, 0, 5, np.inf])

print(np.sign(y))
# [-1. -1.  0.  1.  1.]

Remarques

Cet article est un article sur la migration du blog "Notes techniques pour les ingénieurs de tâches". Le blog précédent sera supprimé.

Recommended Posts

Liste des opérations de tableau (ndarray) de la bibliothèque de calcul numérique de Python "Numpy"
Vitesse de calcul de l'indexation pour un tableau quadratique numpy
calcul de tableau numpy python
Ajouter une liste de fonctions de bibliothèque numpy petit à petit --a
Ajouter une liste de fonctions de la bibliothèque numpy petit à petit --- b
Résumé des opérations de liste Python3
Ajouter une liste de fonctions de bibliothèque numpy petit à petit --c
Initialisation de tableau multidimensionnel de la liste
Calcul de tableau multidimensionnel sans Numpy
Introduction à la bibliothèque de calcul numérique Python NumPy
Calcul de tableau multidimensionnel sans Numpy Partie 2
Python / numpy> fichier de liste (tableau numpy) sauvegarde / chargement
L'histoire du calcul numérique des équations différentielles avec TensorFlow 2.0