[PYTHON] Qiskit: Realizing artificial neurons with quantum circuits (implementation)

Introduction

There was a paper that tried to realize an artificial neuron with a quantum circuit, so I also implemented it. An artificial neuron implemented on actual quantum processor

If you use m qubits, it seems that you will be able to handle $ 2 ^ m $ dimensional input. Here, the calculation is performed before the activation function such as the sigmoid function is applied.

Light commentary

The input vector $ \ vec {i} $ and the weight vector $ \ vec {w} $ are defined as follows.

python


\vec{i} = (i_0, i_1, \cdots,i_{m-1}) \\ \vec{w} = (w_0, w_1, \cdots, w_{m-1})

However, $ i_j, w_j \ in \ {-1, 1 } $. Now consider two quantum states.

python


|\psi_i> = \frac{1}{\sqrt{m}} \sum_{j=0}^{m-1} i_j|j> \\
|\psi_w> = \frac{1}{\sqrt{m}} \sum_{j=0}^{m-1} w_j|j> 

However,|j> = \{|0>, |1>, \cdots, |m-1>\}Let. Also, $ U_i $ and $ U_w $ are defined as follows.

python


U_i |0>^{\otimes N} = |\psi_i> \\
U_w |\psi_i> = |1>^{\otimes N} = |m-1> \\
U_w|\psi_i> = \sum_{j=0}^{m-1} c_j |j> \equiv |\phi_{i,w} >

Finding the inner product of two quantum states

python


<\psi_w|\psi_i> = <\psi_w|U_w^{\dagger} U_w|\psi_i>=<m-1|\phi_{i,w}> = c_{m-1}

If you add ancilla bit and activate multi-controlled NOT gate with it as target bit

python


|\phi_{i,w}>|0>_a = \sum_{j=0}^{m-2} c_j |j>|0>_a + c_{m-1}|m-1>|1>_a 

code

Quantum Hypergraph state is used to create $ U_i $ and $ U_w $.

python


# coding: utf-8

from quantum_hypergraph_state import QuantumHypergraphState
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute
from qiskit import BasicAer

import numpy as np


class QuantumNeuron:

    def __init__(self, using_qubits, input, weight):
        self.num_of_input = using_qubits
        self.index = [i for i in range(self.num_of_input)]
        self.input = input
        self.weight = weight
        self.qr = QuantumRegister(self.num_of_input, name='qubits')   # input qubits and ancilla bit
        self.target = QuantumRegister(1, name='target_bit')
        self.qc = QuantumCircuit(self.qr, self.target)

    def construct_circuit(self):
        inputs = QuantumHypergraphState(self.num_of_input, self.input)
        inputs.construct_circuit(self.qc)
        weight = QuantumHypergraphState(self.num_of_input, self.weight)
        weight.construct_circuit(self.qc, inverse=True)
        ancilla_qubits = QuantumRegister(1)
        classical = ClassicalRegister(1)
        self.qc.add_register(ancilla_qubits)
        self.qc.add_register(classical)
        self.qc.mct([self.qr[i] for i in range(self.num_of_input)],
                    self.target[0],
                    q_ancilla=[ancilla_qubits[i] for i in range(1)])
        self.qc.measure(self.target[0], classical[0])

    def print_details(self, draw=False):
        print('num_of_input: {}'.format(self.num_of_input))
        print('index: {}'.format(self.index))
        if draw:
            print(self.qc.draw())


if __name__ == '__main__':
    num_qubits = 2
    sample = QuantumNeuron(num_qubits, input=[1, 1, 1, 1], weight=[1, 1, -1, -1])
    sample.construct_circuit()
    NUM_SHOTS = 10000
    seed = 1234
    backend = BasicAer.get_backend('qasm_simulator')
    results = execute(sample.qc, backend=backend, shots=NUM_SHOTS, seed_simulator=seed).result()
    sample.print_details()
    counts = results.get_counts()
    print(np.sqrt(counts['1'] / NUM_SHOTS) * 2**num_qubits)

Recommended Posts

Qiskit: Realizing artificial neurons with quantum circuits (implementation)
Qiskit: Quantum Fourier Transform
Qiskit: Realizing artificial neurons with quantum circuits (implementation)
Combinatorial optimization with quantum annealing
Qiskit: Implementation of quantum Boltzmann machine
Qiskit: Implementation of Quantum Hypergraph States
Qiskit: Implementation of Quantum Circuit Learning (QCL)
Qiskit: Implementation of quantum Boltzmann machine
Qiskit: Implementation of Quantum Hypergraph States
Qiskit: Implementation of Quantum Circuit Learning (QCL)