[PYTHON] [Translation] scikit-learn 0.18 Tutorial External resources, videos, talk

Google translated http://scikit-learn.org/0.18/presentations.html

Tutorial Table of Contents / Previous Tutorial


External resources, video, talk

For written tutorials, see the Tutorials section of the documentation (http://qiita.com/nazoking@github/items/5160c11d1a5b3fe8f34c).

Are you new to scientific Python?

When starting a new scientific Python ecosystem, Python Scientific Lecture Notes .turbare.net/transl/scipy-lecture-notes/index.html))) is highly recommended. This will help you find a little foundation and will definitely improve your experience of learning scikit-learn. A basic understanding of NumPy arrays is recommended to get the most out of scikit-learn.

External tutorial

There are several online tutorials tailored to your particular subject area.

-Machine learning for NeuroImaging in Python -Machine learning for astronomical data analysis

video

--Guy Baroque, Jake Bander Plus, Olivier Grisel at Scipy 2013 scikit-learn Part 1 and [Part 2](https: //) by scikit-learn (http://twitter.com/ogrisel) Introducing conference.scipy.org/scipy2013/tutorial_detail.php?id=111). The notebook is on github. --[Introduction of scikit-learn] by Gael Varoquaux at ICML 2010] --A 3-minute video from the very early stages of scikit explains the basic ideas and approaches we follow. --Gael Varoquaux at SciPy 2011 Introduction to Statistics Learning with scikit-learn ) --Extensive tutorial consisting of four 1-hour sessions. This tutorial describes the basics of machine learning, many algorithms, and how to apply them using scikit-learn. Corresponding material can be found in the scikit-learn documentation section Tutorial for statistical learning of scientific data processing. --Scikit-learn by Olivier Grisel and [Statistical Learning for Text Classification by NLTK] at PyCon 2011 (http://www.pyvideo.org/video/417) / pycon-2011--statistical-machine-learning-for-text) (Slide -nltk))) --A 30-minute introduction to text classification. Learn how to use NLTK and scikit-learn to solve real text classification tasks and compare them to cloud-based solutions. --Olivier Grisel at PyCon 2012 [Introduction of interactive predictive analysis using scikit-learn in Python](https://www.youtube.com/watch? v = Zd5dfooZWG4) --A 3-hour introduction to predictive tasks using scikit-learn. --Scikit-learn --Machine Learning with Python of Jake Vanderplas at the 2012 PyData Workshop / scikit-learn_machine_learning_in_python) --Interactive demonstration of the Sikit learning function 75 minutes. --[Scikit-learn tutorial] by Jake Vanderplas at PyData NYC 2012 (https://vimeo.com/53062607) --The presentation uses an online tutorial, 45 minutes.


Tutorial Table of Contents

© 2010 --2016, scikit-learn developers (BSD license).

Recommended Posts

[Translation] scikit-learn 0.18 Tutorial External resources, videos, talk
[Translation] scikit-learn 0.18 Tutorial Text data manipulation
[Translation] scikit-learn 0.18 Tutorial Table of Contents
[Translation] scikit-learn 0.18 Tutorial Choosing the Right Model
[Translation] scikit-learn 0.18 Tutorial Introduction of machine learning by scikit-learn
[Translation] hyperopt tutorial
[Translation] scikit-learn 0.18 tutorial Statistical learning tutorial for scientific data processing
streamlit tutorial Japanese translation