[PYTHON] 100 language processing knocks (2020): 43

"""
43.Extract clauses containing nouns related to clauses containing verbs
When clauses containing nouns relate to clauses containing verbs, extract them in tab-delimited format. However, do not output symbols such as punctuation marks.
"""
from collections import defaultdict
from typing import List


def read_file(fpath: str) -> List[List[str]]:
    """Get clear format of parsed sentences.

    Args:
        fpath (str): File path.

    Returns:
        List[List[str]]: List of sentences, and each sentence contains a word list.
                         e.g. result[1]:
                            ['* 0 2D 0/0 -0.764522',
                             '\u3000\t sign,Blank,*,*,*,*,\u3000,\u3000,\u3000',
                             '* 1 2D 0/1 -0.764522',
                             'I\t noun,Pronoun,General,*,*,*,I,Wagamama,Wagamama',
                             'Is\t particle,Particle,*,*,*,*,Is,C,Wow',
                             '* 2 -1D 0/2 0.000000',
                             'Cat\t noun,General,*,*,*,*,Cat,cat,cat',
                             'so\t auxiliary verb,*,*,*,Special,Continuous form,Is,De,De',
                             'is there\t auxiliary verb,*,*,*,Five steps, La line Al,Uninflected word,is there,Al,Al',
                             '。\t sign,Kuten,*,*,*,*,。,。,。']
    """
    with open(fpath, mode="rt", encoding="utf-8") as f:
        sentences = f.read().split("EOS\n")
    return [sent.strip().split("\n") for sent in sentences if sent.strip() != ""]


class Morph:
    """Morph information for each token.

    Args:
        data (dict): A dictionary contains necessary information.

    Attributes:
        surface (str):Surface
        base (str):Uninflected word (base)
        pos (str):Part of speech (base)
        pos1 (str):Part of speech subcategory 1 (pos1
    """

    def __init__(self, data):
        self.surface = data["surface"]
        self.base = data["base"]
        self.pos = data["pos"]
        self.pos1 = data["pos1"]

    def __repr__(self):
        return f"Morph({self.surface})"

    def __str__(self):
        return "surface[{}]\tbase[{}]\tpos[{}]\tpos1[{}]".format(
            self.surface, self.base, self.pos, self.pos1
        )


class Chunk:
    """Containing information for Clause/phrase.

    Args:
        data (dict): A dictionary contains necessary information.

    Attributes:
        chunk_id (str): The number of clause chunk (Phrase number).
        morphs List[Morph]: Morph (morpheme) list.
        dst (str): The index of dependency target (Contact clause index number).
        srcs (List[str]): The index list of dependency source. (Original clause index number).
    """

    def __init__(self, chunk_id, dst):
        self.id = chunk_id
        self.morphs = []
        self.dst = dst
        self.srcs = []

    def __repr__(self):
        return "Chunk( id: {}, dst: {}, srcs: {}, morphs: {} )".format(
            self.id, self.dst, self.srcs, self.morphs
        )


def convert_sent_to_chunks(sent: List[str]) -> List[Morph]:
    """Extract word and convert to morph.

    Args:
        sent (List[str]): A sentence contains a word list.
                            e.g. sent:
                               ['* 0 1D 0/1 0.000000',
                                'I\t noun,Pronoun,General,*,*,*,I,Wagamama,Wagamama',
                                'Is\t particle,Particle,*,*,*,*,Is,C,Wow',
                                '* 1 -1D 0/2 0.000000',
                                'Cat\t noun,General,*,*,*,*,Cat,cat,cat',
                                'so\t auxiliary verb,*,*,*,Special,Continuous form,Is,De,De',
                                'is there\t auxiliary verb,*,*,*,Five steps, La line Al,Uninflected word,is there,Al,Al',
                                '。\t sign,Kuten,*,*,*,*,。,。,。']

    Parsing format:
        e.g. "* 0 1D 0/1 0.000000"
        |column|meaning|
        | :----: | :----------------------------------------------------------- |
        |   1    |The first column is`*`.. Indicates that this is a dependency analysis result.|
        |   2    |Phrase number (integer starting from 0)|
        |   3    |Contact number +`D`                                              |
        |   4    |Head/Function word positions and any number of feature sequences|
        |   5    |Engagement score. In general, the larger the value, the easier it is to engage.|

    Returns:
        List[Chunk]: List of chunks.
    """
    chunks = []
    chunk = None
    srcs = defaultdict(list)

    for i, word in enumerate(sent):
        if word[0] == "*":
            # Add chunk to chunks
            if chunk is not None:
                chunks.append(chunk)

            # eNw Chunk beggin
            chunk_id = word.split(" ")[1]
            dst = word.split(" ")[2].rstrip("D")
            chunk = Chunk(chunk_id, dst)
            srcs[dst].append(chunk_id)  # Add target->source to mapping list

        else:  # Add Morch to chunk.morphs
            features = word.split(",")
            dic = {
                "surface": features[0].split("\t")[0],
                "base": features[6],
                "pos": features[0].split("\t")[1],
                "pos1": features[1],
            }
            chunk.morphs.append(Morph(dic))

            if i == len(sent) - 1:  # Add the last chunk
                chunks.append(chunk)

    # Add srcs to each chunk
    for chunk in chunks:
        chunk.srcs = list(srcs[chunk.id])

    return chunks


def concat_morphs_surface(chunk: Chunk) -> str:
    """Concatenate morph surfaces in a chink.

    Args:
        chunk (Chunk): e.g. Chunk( id: 0, dst: 5, srcs: [], morphs: [Morph(I), Morph(Is)]
    Return:
        e.g. 'I am'
    """
    res = ""
    for morph in chunk.morphs:
        if morph.pos != "symbol":
            res += morph.surface
    return res


# ans43
def validate_pos_in_chunk(chunk: Chunk, pos: str) -> bool:
    """Return Ture if 'noun' or 'verb' in chunk's morphs. Otherwise, return False."""
    return any([morph.pos == pos for morph in chunk.morphs])


def concat_chunks_surface(chunks: List[Chunk]):
    """Concatenate surface of dependency source and target between chunks.

    Args:
        chunks (List[Chunk]): chunks represent a sentences.
            e.g. [Chunk( id: 0, dst: 5, srcs: [], morphs: [Morph(I), Morph(Is)] ),
                  Chunk( id: 1, dst: 2, srcs: [], morphs: [Morph(here), Morph(so)] ),
                  Chunk( id: 2, dst: 3, srcs: ['1'], morphs: [Morph(start), Morph(hand)] ),
                  Chunk( id: 3, dst: 4, srcs: ['2'], morphs: [Morph(Human), Morph(That)] ),
                  Chunk( id: 4, dst: 5, srcs: ['3'], morphs: [Morph(thing), Morph(To)] ),
                  Chunk( id: 5, dst: -1, srcs: ['0', '4'], morphs: [Morph(You see), Morph(Ta), Morph(。)] )]
    """
    chunks_surface = []
    for chunk in chunks:
        if len(chunk.srcs) == 0:
            continue
        else:
            if validate_pos_in_chunk(chunk, "verb"):
                current_chunk_surface = concat_morphs_surface(chunk)
                for src in chunk.srcs:
                    src_chunk = chunks[int(src)]
                    if validate_pos_in_chunk(src_chunk, "noun"):
                        src_chunk_surface = concat_morphs_surface(src_chunk)
                        chunks_surface.append(
                            "{}  {}".format(src_chunk_surface, current_chunk_surface)
                        )
    return chunks_surface


fpath = "neko.txt.cabocha"
sentences = read_file(fpath)
chunks = [convert_sent_to_chunks(sent) for sent in sentences]  # ans41
result = [concat_chunks_surface(sent) for sent in chunks]  # ans43
result = list(filter(lambda x: len(x) != 0, result))  # filtering the empty list

for sent in result[:3]:
    print(sent)

# ['Where were you born', 'I have no idea']
# ['Crying at the place', 'Meow meow crying', 'I remember only what I was']
# ['For the first time here', 'I saw', 'I saw something']

Recommended Posts

100 language processing knocks 03 ~ 05
100 language processing knocks (2020): 40
100 language processing knocks (2020): 32
100 language processing knocks (2020): 35
100 language processing knocks (2020): 47
100 language processing knocks (2020): 39
100 language processing knocks (2020): 22
100 language processing knocks (2020): 42
100 language processing knocks (2020): 29
100 language processing knocks (2020): 49
100 language processing knocks (2020): 43
100 language processing knocks (2020): 24
100 language processing knocks (2020): 45
100 language processing knocks (2020): 10-19
100 language processing knocks (2020): 30
100 language processing knocks (2020): 00-09
100 language processing knocks (2020): 31
100 language processing knocks (2020): 48
100 language processing knocks (2020): 44
100 language processing knocks (2020): 41
100 language processing knocks (2020): 37
100 language processing knocks (2020): 25
100 language processing knocks (2020): 23
100 language processing knocks (2020): 33
100 language processing knocks (2020): 20
100 language processing knocks (2020): 27
100 language processing knocks (2020): 46
100 language processing knocks (2020): 21
100 language processing knocks (2020): 36
100 amateur language processing knocks: 41
100 amateur language processing knocks: 71
100 amateur language processing knocks: 56
100 amateur language processing knocks: 24
100 amateur language processing knocks: 59
100 amateur language processing knocks: 70
100 amateur language processing knocks: 60
100 amateur language processing knocks: 92
100 amateur language processing knocks: 30
100 amateur language processing knocks: 06
100 amateur language processing knocks: 84
100 amateur language processing knocks: 81
100 amateur language processing knocks: 33
100 amateur language processing knocks: 40
100 amateur language processing knocks: 45
100 amateur language processing knocks: 43
100 amateur language processing knocks: 55
100 amateur language processing knocks: 22
100 amateur language processing knocks: 61
100 amateur language processing knocks: 94
100 amateur language processing knocks: 54
100 amateur language processing knocks: 04
100 amateur language processing knocks: 63
100 amateur language processing knocks: 12
100 amateur language processing knocks: 14
100 amateur language processing knocks: 08
100 amateur language processing knocks: 42
100 language processing knocks ~ Chapter 1
100 amateur language processing knocks: 19
100 amateur language processing knocks: 73
100 amateur language processing knocks: 75
100 amateur language processing knocks: 98