[PYTHON] 100 language processing knock-76 (using scikit-learn): labeling

This is the record of the 76th "labeling" of Language processing 100 knock 2015. Knock's question content is labeled with predictions for training data, but this time we dare to use test data. Until now, I didn't post it to the block because it was basically the same as "Amateur language processing 100 knocks". , "Chapter 8: Machine Learning" has been taken seriously and changed to some extent. I will post. I mainly use scikit-learn.

Reference link

Link Remarks
076.Labeling.ipynb Answer program GitHub link
100 amateur language processing knocks:76 I am always indebted to you by knocking 100 language processing
Getting started with Python with 100 knocks on language processing#76 -Machine learning, scikit-Prediction probability with learn scikit-Knock result using learn

environment

type version Contents
OS Ubuntu18.04.01 LTS It is running virtually
pyenv 1.2.15 I use pyenv because I sometimes use multiple Python environments
Python 3.6.9 python3 on pyenv.6.I'm using 9
3.7 or 3.There is no deep reason not to use 8 series
Packages are managed using venv

In the above environment, I am using the following additional Python packages. Just install with regular pip.

type version
matplotlib 3.1.1
numpy 1.17.4
pandas 0.25.3
scikit-learn 0.21.3

Task

Chapter 8: Machine Learning

In this chapter, [sentence polarity dataset] of Movie Review Data published by Bo Pang and Lillian Lee. v1.0](http://www.cs.cornell.edu/people/pabo/movie-review-data/rt-polaritydata.README.1.0.txt) is used to make the sentence positive or negative. Work on the task (polarity analysis) to classify as (negative).

76. Labeling

Apply the logistic regression model to the training data and output the correct label, predicted label, and predicted probability in tab-delimited format.

This time, we ignore the part "for training data" and carry out for test data. I thought that test data would be more useful than training data.

Answer

Answer Program [076. Labeling.ipynb](https://github.com/YoheiFukuhara/nlp100/blob/master/08.%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7% BF% 92/076.% E3% 83% A9% E3% 83% 99% E3% 83% AB% E4% BB% 98% E3% 81% 91.ipynb)

Basically [Previous "Answer Program (Analysis) 075. Weight of Features.ipynb"](https://github.com/YoheiFukuhara/nlp100/blob/master/08.%E6%A9%9F%E6% A2% B0% E5% AD% A6% E7% BF% 92 / 075.% E7% B4% A0% E6% 80% A7% E3% 81% AE% E9% 87% 8D% E3% 81% BF.ipynb ) With prediction and file output logic.

import csv

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.pipeline import Pipeline
from sklearn.base import BaseEstimator, TransformerMixin

#Classes for using word vectorization in GridSearchCV
class myVectorizer(BaseEstimator, TransformerMixin):
    def __init__(self, method='tfidf', min_df=0.0005, max_df=0.10):
        self.method = method
        self.min_df = min_df
        self.max_df = max_df

    def fit(self, x, y=None):
        if self.method == 'tfidf':
            self.vectorizer = TfidfVectorizer(min_df=self.min_df, max_df=self.max_df)
        else:
            self.vectorizer = CountVectorizer(min_df=self.min_df, max_df=self.max_df)
        self.vectorizer.fit(x)
        return self

    def transform(self, x, y=None):
        return self.vectorizer.transform(x)
		
#Parameters for GridSearchCV
PARAMETERS = [
    {
        'vectorizer__method':['tfidf', 'count'], 
        'vectorizer__min_df': [0.0003, 0.0004], 
        'vectorizer__max_df': [0.07, 0.10], 
        'classifier__C': [1, 3],    #I also tried 10 but the SCORE is low just because it is slow
        'classifier__solver': ['newton-cg', 'liblinear']},
    ]

#Read file
def read_csv_column(col):
    with open('./sentiment_stem.txt') as file:
        reader = csv.reader(file, delimiter='\t')
        header = next(reader)
        return [row[col] for row in reader]    
		
x_all = read_csv_column(1)
y_all = read_csv_column(0)
x_train, x_test, y_train, y_test = train_test_split(x_all, y_all)

def train(x_train, y_train, file):
    pipline = Pipeline([('vectorizer', myVectorizer()), ('classifier', LogisticRegression())])
    
    #clf stands for classification
    clf = GridSearchCV(
            pipline, # 
            PARAMETERS,           #Parameter set you want to optimize
            cv = 5)               #Number of cross-validations
    
    clf.fit(x_train, y_train)
    pd.DataFrame.from_dict(clf.cv_results_).to_csv(file)

    print('Grid Search Best parameters:', clf.best_params_)
    print('Grid Search Best validation score:', clf.best_score_)
    print('Grid Search Best training score:', clf.best_estimator_.score(x_train, y_train))    
    
    #Feature weight output
    output_coef(clf.best_estimator_)
    
    return clf.best_estimator_

#Feature weight output
def output_coef(estimator):
    vec = estimator.named_steps['vectorizer']
    clf = estimator.named_steps['classifier']

    coef_df = pd.DataFrame([clf.coef_[0]]).T.rename(columns={0: 'Coefficients'})
    coef_df.index = vec.vectorizer.get_feature_names()
    coef_sort = coef_df.sort_values('Coefficients')
    coef_sort[:10].plot.barh()
    coef_sort.tail(10).plot.barh()

def validate(estimator, x_test, y_test):
    
    for i, (x, y) in enumerate(zip(x_test, y_test)):
        y_pred = estimator.predict_proba([x])
        if y == np.argmax(y_pred).astype( str ):
            if y == '1':
                result = 'TP:The correct answer is Positive and the prediction is Positive'
            else:
                result = 'TN:The correct answer is Negative and the prediction is Negative'
        else:
            if y == '1':
                result = 'FN:The correct answer is Positive and the prediction is Negative'
            else:
                result = 'FP:The correct answer is Negative and the prediction is Positive'
        print(result, y_pred, x)
        if i == 29:
            break

    #TSV list output
    y_pred = estimator.predict(x_test)
    y_prob = estimator.predict_proba(x_test)

    results = pd.DataFrame([y_test, y_pred, y_prob.T[1], x_test]).T.rename(columns={ 0: 'Correct answer', 1 : 'Forecast', 2: 'Forecast確率(positive)', 3 :'Word string'})
    results.to_csv('./predict.txt' , sep='\t')

estimator = train(x_train, y_train, 'gs_result.csv')
validate(estimator, x_test, y_test)

Answer commentary

The following tab-delimited file is output by the to_csv function of pandas.

Column item Example
1st row Correct label もともと持っていたCorrect label 0(0 is negative)
2nd row Forecast label predict_probaPrediction results obtained using the function 0(0 is negative)
3rd row Predicted probability predict_proba関数を使って取得したPredicted probability。
The second column of the return value of the function is the probability of being positive
0.4436
4th row Word string もともと持っていたWord stringの説明変数 empti shell epic rather real deal
#TSV list output
y_pred = estimator.predict(x_test)
y_prob = estimator.predict_proba(x_test)

results = pd.DataFrame([y_test, y_pred, y_prob.T[1], x_test]).T.rename(columns={ 0: 'Correct answer', 1 : 'Forecast', 2: 'Forecast確率(positive)', 3 :'Word string'})
results.to_csv('./predict.txt' , sep='\t')

Output file [predict.txt](https://github.com/YoheiFukuhara/nlp100/blob/master/08.%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7%BF% 92 / predict.txt) is on GitHub.

Recommended Posts

100 language processing knock-76 (using scikit-learn): labeling
100 language processing knock-73 (using scikit-learn): learning
100 language processing knock-74 (using scikit-learn): Prediction
100 language processing knock-97 (using scikit-learn): k-means clustering
100 language processing knock-79 (using scikit-learn): precision-recall graph drawing
100 language processing knock-75 (using scikit-learn): weight of features
100 Language Processing Knock (2020): 28
100 Language Processing Knock (2020): 38
100 Language Processing Knock-31 (using pandas): Verb
100 language processing knock 00 ~ 02
100 Language Processing Knock-38 (using pandas): Histogram
100 language processing knock-77 (using scikit-learn): measurement of correct answer rate
100 Language Processing Knock-33 (using pandas): Sahen noun
100 Language Processing Knock-71 (using Stanford NLP): Stopword
100 Language Processing Knock-35 (using pandas): Noun concatenation
100 Language Processing Knock-39 (using pandas): Zipf's Law
100 Language Processing Knock-34 (using pandas): "A B"
100 language processing knock 2020 [00 ~ 39 answer]
100 language processing knock 2020 [00-79 answer]
100 language processing knock 2020 [00 ~ 69 answer]
100 Language Processing Knock 2020 Chapter 1
100 Amateur Language Processing Knock: 17
100 language processing knock 2020 [00 ~ 49 answer]
100 Language Processing Knock-52: Stemming
100 Language Processing Knock Chapter 1
100 Amateur Language Processing Knock: 07
100 Language Processing Knock 2020 Chapter 3
100 Language Processing Knock 2020 Chapter 2
100 Amateur Language Processing Knock: 09
100 Amateur Language Processing Knock: 47
100 Language Processing Knock-53: Tokenization
100 Amateur Language Processing Knock: 97
100 language processing knock 2020 [00 ~ 59 answer]
100 Amateur Language Processing Knock: 67
100 language processing knock-90 (using Gensim): learning with word2vec
100 language processing knock-20 (using pandas): reading JSON data
100 Language Processing Knock-32 (using pandas): Prototype of verb
100 language processing knock-98 (using pandas): Ward's method clustering
100 language processing knock-99 (using pandas): visualization by t-SNE
100 language processing knock-95 (using pandas): Rating with WordSimilarity-353
100 language processing knock-72 (using Stanford NLP): feature extraction
100 Language Processing Knock-51: Word Clipping
100 Language Processing Knock-58: Tuple Extraction
100 Language Processing Knock-57: Dependency Analysis
100 language processing knock-50: sentence break
100 Language Processing Knock Chapter 1 (Python)
100 Language Processing Knock Chapter 2 (Python)
100 Language Processing Knock-25: Template Extraction
100 Language Processing Knock-87: Word Similarity
I tried 100 language processing knock 2020
100 language processing knock-56: co-reference analysis
Solving 100 Language Processing Knock 2020 (01. "Patatokukashi")
100 Amateur Language Processing Knock: Summary
100 language processing knock-92 (using Gensim): application to analogy data
100 Language Processing Knock-36 (using pandas): Frequency of word occurrence
100 Language Processing Knock: Chapter 2 UNIX Command Basics (using pandas)
100 Language Processing Knock-83 (using pandas): Measuring word / context frequency
100 language processing knock-30 (using pandas): reading morphological analysis results
100 language processing knock-94 (using Gensim): similarity calculation with WordSimilarity-353
100 Language Processing Knock 2020 Chapter 2: UNIX Commands
100 Language Processing Knock 2015 Chapter 5 Dependency Analysis (40-49)