[PYTHON] Ich habe die Grundoperation von Pandas im Jupyter Lab geschrieben (Teil 1)

Dieser Artikel ist ein Artikel, den ich mit Jupyter Lab tatsächlich in Kame (@usdatascientist) 's Blog (https://datawokagaku.com/python_for_ds_summary/) beschrieben habe.

Zusammenfassung der Grundoperationen von Pandas

10 ..

import pandas as pd
import numpy as np

Series

data = {'name':'John', 'sex':'male', 'age': 22}
john_s = pd.Series(data)
print(john_s)
name    John
sex     male
age       22
dtype: object
array = np.array([10,20,30])
pd.Series(array)
0    10
1    20
2    30
dtype: int64
array = np.array([10,20,30])
labels = ['a','b','c']
pd.Series(array, labels)
a    10
b    20
c    30
dtype: int64

11 ..

So erstellen Sie einen DataFrame

Machen Sie aus Ndarray

data = {'name':'John', 'sex':'male', 'age': 22}
john_s = pd.Series(data)
print(john_s)
print(john_s['age'])
name    John
sex     male
age       22
dtype: object
22
ndarray = np.random.randint(5, size=(5,4))
pd.DataFrame(data=ndarray)
0 1 2 3
0 1 1 1 0
1 4 1 0 0
2 3 2 1 0
3 3 1 1 3
4 4 0 1 3
columns = ['a','b','c','d']
index = np.arange(0,50,10)
pd.DataFrame(data=ndarray, index=index, columns=columns)
a b c d
0 1 1 1 0
10 4 1 0 0
20 3 2 1 0
30 3 1 1 3
40 4 0 1 3

Aus Wörterbuch machen

data1 = {
    'name':'John',
    'sex':'male',
    'age':22
}
data2 = {
    'name':'Zack',
    'sex':'male',
    'age':30
}
data3 ={
    'name':'Emily',
    'sex':'female',
    'age':32
}
pd.DataFrame([data1, data2, data3])
name sex age
0 John male 22
1 Zack male 30
2 Emily female 32
df = pd.read_csv('train.csv')
df.head()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

12 ..

Zeigen Sie die ersten 5 Zeilen mit .head () an.

df.head()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

Überprüfen Sie die Statistiken mit .describe ()

df.describe()
PassengerId Survived Pclass Age SibSp Parch Fare
count 891.000000 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000
mean 446.000000 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208
std 257.353842 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429
min 1.000000 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000
25% 223.500000 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400
50% 446.000000 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200
75% 668.500000 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000
max 891.000000 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200
type(df.describe()) #Typ ist DataFrame
pandas.core.frame.DataFrame

Liste der Spalten in .columns anzeigen

df.columns
Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
       'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
      dtype='object')
type(df.columns) #Typ ist Index
pandas.core.indexes.base.Index
df.index #Es gibt auch einen Index.
RangeIndex(start=0, stop=891, step=1)

Holen Sie sich die Serie mit einer bestimmten Spalte, die von der Klammer [] umschlossen wird.

df['Age'].head()
0    22.0
1    38.0
2    26.0
3    35.0
4    35.0
Name: Age, dtype: float64
type(df['Age'])
pandas.core.series.Series

Fügen Sie eine Liste der Spalten in die Klammer [] ein und extrahieren Sie mehrere Spalten gleichzeitig

df[['Age','Parch','Fare']].head()
Age Parch Fare
0 22.0 0 7.2500
1 38.0 0 71.2833
2 26.0 0 7.9250
3 35.0 0 53.1000
4 35.0 0 8.0500

Holen Sie sich eine bestimmte Zeile in Serie mit .iloc [int]

df.iloc[888] #index location
PassengerId                                         889
Survived                                              0
Pclass                                                3
Name           Johnston, Miss. Catherine Helen "Carrie"
Sex                                              female
Age                                                 NaN
SibSp                                                 1
Parch                                                 2
Ticket                                       W./C. 6607
Fare                                              23.45
Cabin                                               NaN
Embarked                                              S
Name: 888, dtype: object
df.iloc[888]['Age']
nan
np.isnan(df.iloc[888]['Age'])
True
np.random.seed(1)
ndarray = np.random.randint(10, size=(5,5))
columns = [0,1,2,3,4]
index = ['a','b','c','d','e']
df_1 = pd.DataFrame(data=ndarray, index=index, columns=columns)
df_1
0 1 2 3 4
a 5 8 9 5 0
b 0 1 7 6 9
c 2 4 5 2 4
d 2 4 7 7 9
e 1 7 0 6 9
df_1[0] 
a    5
b    0
c    2
d    2
e    1
Name: 0, dtype: int64
df_1.loc['c'] #Wenn die Zeile nicht int ist['str']Zu.
0    2
1    4
2    5
3    2
4    4
Name: c, dtype: int64

Löschen Sie bestimmte Zeilen und Spalten mit Slicing

Drop-Index = 0 (0. Spalte)

df.drop(0) .head()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
5 6 0 3 Moran, Mr. James male NaN 0 0 330877 8.4583 NaN Q

Lass die 'Alter'-Spalte fallen

df.drop('Age', axis=1) .head()
PassengerId Survived Pclass Name Sex SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 0 0 373450 8.0500 NaN S

Übergeben Sie beim Löschen mehrerer Spalten die Liste als Argument .drop ([]). Durch Löschen wird die ursprüngliche df nicht geändert

df.drop(['Age','PassengerId'], axis=1) .head()
Survived Pclass Name Sex SibSp Parch Ticket Fare Cabin Embarked
0 0 3 Braund, Mr. Owen Harris male 1 0 A/5 21171 7.2500 NaN S
1 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 1 0 PC 17599 71.2833 C85 C
2 1 3 Heikkinen, Miss. Laina female 0 0 STON/O2. 3101282 7.9250 NaN S
3 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 1 0 113803 53.1000 C123 S
4 0 3 Allen, Mr. William Henry male 0 0 373450 8.0500 NaN S
df.head()#Drop ändert nicht die ursprüngliche df
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

Es gibt zwei Möglichkeiten, df zu überschreiben. Wenn Sie place = True festlegen, wird der ursprüngliche DataFrame geändert

df = pd.read_csv('train.csv')
df.drop(['Age', 'Cabin'], axis=1, inplace=True) 
df .head()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
df = pd.read_csv('train.csv')
df = df.drop(['Age', 'Cabin'], axis=1)
id(df)
140285150057616

Holen Sie sich mehrere Zeilen mit Schneiden

df.iloc[5:10]
PassengerId Survived Pclass Name Sex SibSp Parch Ticket Fare Embarked
5 6 0 3 Moran, Mr. James male 0 0 330877 8.4583 Q
6 7 0 1 McCarthy, Mr. Timothy J male 0 0 17463 51.8625 S
7 8 0 3 Palsson, Master. Gosta Leonard male 3 1 349909 21.0750 S
8 9 1 3 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 0 2 347742 11.1333 S
9 10 1 2 Nasser, Mrs. Nicholas (Adele Achem) female 1 0 237736 30.0708 C

13 ..

Filtern Sie den DataFrame nach bestimmten Bedingungen

df = pd.read_csv('train.csv')
df = df['Survived'] == 1#Überlebende filtern
df.head()
0    False
1     True
2     True
3     True
4    False
Name: Survived, dtype: bool
filter = df['Survived'] ==1 #Fügen Sie es in eine Variable namens filter ein
df = df[filter]
df.head()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
8 9 1 3 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0 2 347742 11.1333 NaN S
9 10 1 2 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1 0 237736 30.0708 NaN C
df = df[df['Survived'] ==1] #Dies ist häufiger
df.head()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
8 9 1 3 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0 2 347742 11.1333 NaN S
9 10 1 2 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1 0 237736 30.0708 NaN C
df[df['Survived'] ==1].describe() #Beschreiben Sie nur Überlebensdaten
PassengerId Survived Pclass Age SibSp Parch Fare
count 342.000000 342.0 342.000000 290.000000 342.000000 342.000000 342.000000
mean 444.368421 1.0 1.950292 28.343690 0.473684 0.464912 48.395408
std 252.358840 0.0 0.863321 14.950952 0.708688 0.771712 66.596998
min 2.000000 1.0 1.000000 0.420000 0.000000 0.000000 0.000000
25% 250.750000 1.0 1.000000 19.000000 0.000000 0.000000 12.475000
50% 439.500000 1.0 2.000000 28.000000 0.000000 0.000000 26.000000
75% 651.500000 1.0 3.000000 36.000000 1.000000 1.000000 57.000000
max 890.000000 1.0 3.000000 80.000000 4.000000 5.000000 512.329200
df.describe() #Originale Daten
PassengerId Survived Pclass Age SibSp Parch Fare
count 891.000000 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000
mean 446.000000 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208
std 257.353842 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429
min 1.000000 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000
25% 223.500000 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400
50% 446.000000 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200
75% 668.500000 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000
max 891.000000 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200
df[df['Age'] >= 60].describe() #'Age'>=Nur 60
PassengerId Survived Pclass Age SibSp Parch Fare
count 26.000000 26.000000 26.000000 26.000000 26.000000 26.000000 26.000000
mean 455.807692 0.269231 1.538462 65.096154 0.230769 0.307692 43.467950
std 240.078490 0.452344 0.811456 5.110811 0.429669 0.837579 51.269998
min 34.000000 0.000000 1.000000 60.000000 0.000000 0.000000 6.237500
25% 277.250000 0.000000 1.000000 61.250000 0.000000 0.000000 10.500000
50% 489.000000 0.000000 1.000000 63.500000 0.000000 0.000000 28.275000
75% 629.750000 0.750000 2.000000 69.000000 0.000000 0.000000 58.860450
max 852.000000 1.000000 3.000000 80.000000 1.000000 4.000000 263.000000
df[(df['Age']>=60) & (df['Sex']=='female')] #Daten nur für Frauen über 60 Jahre
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
275 276 1 1 Andrews, Miss. Kornelia Theodosia female 63.0 1 0 13502 77.9583 D7 S
366 367 1 1 Warren, Mrs. Frank Manley (Anna Sophia Atkinson) female 60.0 1 0 110813 75.2500 D37 C
483 484 1 3 Turkula, Mrs. (Hedwig) female 63.0 0 0 4134 9.5875 NaN S
829 830 1 1 Stone, Mrs. George Nelson (Martha Evelyn) female 62.0 0 0 113572 80.0000 B28 NaN
df[(df['Pclass']==1) | (df['Age']<10)] #Daten nur für die 1. Klasse oder unter 10 Jahren
df.head()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
8 9 1 3 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0 2 347742 11.1333 NaN S
9 10 1 2 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1 0 237736 30.0708 NaN C

Wenn ~ (Kringel) hinzugefügt wird, kann es durch NOT-Operation gefiltert werden.

data =[{'Name':'John', 'Survived':True},
      {'Name':'Emily', 'Survived':False},
      {'Name':'Ben', 'Survived':True}]
df = pd.DataFrame(data)
df
Name Survived
0 John True
1 Emily False
2 Ben True

Es wird häufig verwendet, wenn nach einer Spalte gefiltert wird, deren Wert boolesch ist.

df[df['Survived']==True] 
Name Survived
0 John True
2 Ben True

Da die Spalte Survived bereits Boolean ist, benötigen Sie == True nicht. Da df ['Survived'] bereits eine Boolean-Reihe ist, können Sie sie einfach wie links gezeigt filtern.

df[df['Survived']] 
Name Survived
0 John True
2 Ben True

Wenn Sie auf Survived == False eingrenzen möchten, können Sie Folgendes tun, ohne df [df ['Survived' == False] ausführen zu müssen.

df[~df['Survived']] 
Name Survived
1 Emily False

Index ändern

Index mit .reset_index () neu zuweisen

df = pd.read_csv('train.csv')
df = df[df['Sex']=='male']
df.head() #Index ist unzusammenhängend
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
5 6 0 3 Moran, Mr. James male NaN 0 0 330877 8.4583 NaN Q
6 7 0 1 McCarthy, Mr. Timothy J male 54.0 0 0 17463 51.8625 E46 S
7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 1 349909 21.0750 NaN S

Indizes ausrichten

Wie bei .drop () wird das ursprüngliche df nicht überschrieben. Wenn Sie also das df aktualisieren möchten, weisen Sie es mit inplace = True oder df = df.reset_index () neu zu.

df.reset_index() .head()
index PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
2 5 6 0 3 Moran, Mr. James male NaN 0 0 330877 8.4583 NaN Q
3 6 7 0 1 McCarthy, Mr. Timothy J male 54.0 0 0 17463 51.8625 E46 S
4 7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 1 349909 21.0750 NaN S

Verwenden Sie .set_index (), um eine bestimmte Spalte zu indizieren

Setzen Sie den Index auf "Name".

Wie bei .reset_index () können Sie die ursprüngliche df mit inplace = True überschreiben.

df.set_index('Name').head()
PassengerId Survived Pclass Sex Age SibSp Parch Ticket Fare Cabin Embarked
Name
Braund, Mr. Owen Harris 1 0 3 male 22.0 1 0 A/5 21171 7.2500 NaN S
Allen, Mr. William Henry 5 0 3 male 35.0 0 0 373450 8.0500 NaN S
Moran, Mr. James 6 0 3 male NaN 0 0 330877 8.4583 NaN Q
McCarthy, Mr. Timothy J 7 0 1 male 54.0 0 0 17463 51.8625 E46 S
Palsson, Master. Gosta Leonard 8 0 3 male 2.0 3 1 349909 21.0750 NaN S

Recommended Posts

Ich habe die Grundoperation von Pandas im Jupyter Lab geschrieben (Teil 1)
Ich habe die grundlegende Operation von Pandas im Jupyter Lab geschrieben (Teil 2).
Ich habe die Grundoperation von matplotlib in Jupyter Lab geschrieben
Ich habe die grundlegende Grammatik von Python in Jupyter Lab geschrieben
Ich habe die Grundoperation von Seaborn im Jupyter Lab geschrieben
Ich habe die Grundoperation von Numpy im Jupyter Lab geschrieben.
Grundlegende Bedienung von Pandas
Grundlegende Bedienung von Pandas
Ich habe versucht, den DNN-Teil von OpenPose mit Chainer-CPU auszuführen
Erstellen Sie eine Ausführungsumgebung für Jupyter Lab
Ich habe einen Fehler beim Abrufen der Hierarchie mit MultiIndex von Pandas gemacht
Ich habe die Pivot-Table-Funktion von Pandas ausprobiert
Automatischer Betrieb von Chrome mit Python + Selen + Pandas
Ich habe die Liste der Tastenkombinationen von Jupyter überprüft
Grundlegende Bedienung von Python Pandas Series und Dataframe (1)
Ich habe den gleitenden Durchschnitt des IIR-Filtertyps mit Pandas und Scipy verglichen
Berechnen Sie die Summe der eindeutigen Werte durch Pandas-Kreuztabellen
Ich habe versucht, die Grundform von GPLVM zusammenzufassen
Ich möchte die Standortinformationen von GTFS Realtime auf Jupyter zeichnen! (Mit Ballon)
Notieren Sie sich die Liste der grundlegenden Verwendungszwecke von Pandas
Zeichnen auf Jupyter mit der Plot-Funktion von Pandas
Ich habe die Leistung von 1 Million Dokumenten mit mongoDB gemessen
Zusammenfassung des grundlegenden Ablaufs des maschinellen Lernens mit Python
Ich habe versucht, den negativen Teil von Meros zu löschen
Holen Sie sich mit Python den Betriebsstatus von JR West
Ich habe versucht, die Verarbeitungsgeschwindigkeit mit dplyr von R und pandas von Python zu vergleichen
Ich habe dir geschrieben, dass du das Signal mit Go sehen sollst
Ich schrieb einen Test in "Ich habe versucht, die Wahrscheinlichkeit eines Bingospiels mit Python zu simulieren".
Ich habe versucht, die Entropie des Bildes mit Python zu finden
Ich habe versucht, das Bild mit Python + OpenCV "gammakorrektur" zu machen
Ich habe den Code für die japanische Satzgenerierung mit DeZero geschrieben
Ich habe versucht, mit TensorFlow den Durchschnitt mehrerer Spalten zu ermitteln
Ich habe die Strategie des Aktiensystemhandels mit Python evaluiert.
Ich möchte Betriebsinformationen über die Yahoo-Route erhalten
Ich habe versucht, den FloodFill-Algorithmus mit TRON BATTLE von CodinGame zu implementieren
Ich habe ein Punktbild des Bildes von Irasutoya gemacht. (Teil 1)
Versuchen Sie, den Betrieb von Netzwerkgeräten mit Python zu automatisieren
Ich habe ein Punktbild des Bildes von Irasutoya gemacht. (Teil 2)
Ich habe GP mit Numpy geschrieben
Python-Anwendung: Pandas Teil 1: Basic
Ändern Sie das Thema von Jupyter
Zusammenfassung der grundlegenden Verwendung von Pandas
Die Kraft der Pandas: Python
Grundlegende Berechnung von Pandas, um Hakone Ekiden zu genießen und gleichzeitig mit den besten Mitgliedern aller Zeiten zu konkurrieren
Teil 1 Ich habe die Antwort auf das Referenzproblem geschrieben, wie man in Python in Echtzeit offline schreibt
Ich habe die Geschwindigkeit von Hash mit Topaz, Ruby und Python verglichen
Ich habe versucht, das Ranking des Qiita-Adventskalenders mit Python zu kratzen
[AWS / Tello] Ich habe versucht, die Drohne mit meiner Stimme Part2 zu bedienen
Ich habe versucht, eine eigenständige Bereitstellung von Play with Fabric [AWS-Operation mit Boto] [Play Deployment] durchzuführen.
Ich habe versucht, die Bewässerung des Pflanzgefäßes mit Raspberry Pi zu automatisieren
[Python] Ich habe die Route des Taifuns mit Folium auf die Karte geschrieben
[Einführung in StyleGAN] Ich habe mit "The Life of a Man" ♬ gespielt
Ich möchte den Anfang des nächsten Monats mit Python ausgeben
Ich habe den Code geschrieben, um den Brainf * ck-Code in Python zu schreiben
Zählen Sie mit NetworkX den maximal verketteten Teil eines zufälligen Diagramms
Formatieren Sie die CSV-Datei "Nationalfeiertag" des Kabinetts mit Pandas
[AWS / Tello] Ich habe versucht, die Drohne mit meiner Stimme Part1 zu bedienen
Ich habe versucht, die Größe des logischen Volumes mit LVM zu erweitern
Ich möchte die Position meines Gesichts mit OpenCV überprüfen!
Ich habe das Bild der Science University auf Twitter mit Word2Vec überprüft.