Die Operationsmethode des N-dimensionalen Array-Objekts (im Folgenden ndarray), die von Pythons numerischer Berechnungsbibliothek "Numpy" bereitgestellt wird, ist organisiert. Python lässt sich aufgrund mangelnder Datentypunterstützung nur langsam berechnen. Bei der Berechnung mit einer großen Datenmenge wird standardmäßig ndarray verwendet.
import numpy as np
Generieren Sie ein ndarray.
【array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0)
】
y = np.array([1,2,3])
X = np.array([[1,2,3], [4,5,6]], dtype=np.int64)
【zeros(shape, dtype=float, order='C')
】
y = np.zeros(3)
# array([0., 0., 0.])
X = np.zeros((2,3))
# array([[0., 0., 0.],
# [0., 0., 0.]])
【ones(shape, dtype=None, order='C')
】
y = np.ones(3)
# array([1., 1., 1.])
X = np.ones((2,3))
# array([[1., 1., 1.],
# [1., 1., 1.]])
【empty(shape, dtype=None, order='C')
】
y = np.empty(3)
# array([0.39215686, 0.70980392, 0.80392157])
X = np.empty((2,3))
# array([[2.6885677e-316, 0.0000000e+000, 0.0000000e+000],
# [0.0000000e+000, 0.0000000e+000, 0.0000000e+000]])
【identity(n, dtype=None)
】
X = np.identity(3)
# array([[1., 0., 0.],
# [0., 1., 0.],
# [0., 0., 1.]])
【arange([start,] stop[, step,], dtype=None)
】
y = np.arange(5)
# array([0, 1, 2, 3, 4])
y = np.arange(2,5)
# array([2, 3, 4])
y = np.arange(5,2,-1)
# array([5, 4, 3])
【linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
】
y = np.linspace(2,10,3)
# array([ 2., 6., 10.])
y = np.linspace(2,10,5)
# array([ 2., 4., 6., 8., 10.])
【unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None)
】
y = np.unique(['C', 'E', 'C', 'A', 'B', 'E', 'D', 'C'])
# array(['A', 'B', 'C', 'D', 'E'], dtype='<U1')
Die Elemente von ndarray können auf dieselbe Weise wie Listenelemente in Python abrufen abgerufen werden. Beachten Sie jedoch, dass sich die Spezifikationsmethode für mehrdimensionale Arrays ändert.
X = [[1,2,3],[4,5,6]]
print(X[1][2])
# 6
X_numpy = np.array(X)
print(X_numpy[1,2])
# 6
Zusätzlich zu der üblichen Erfassungsmethode kann sie auch mit der folgenden Methode erfasst werden.
X = np.array([[1,2,3],[4,5,6]])
print(X[[0,1,-1]])
# [[1 2 3],
# [4 5 6],
# [4 5 6]]
print(X[[0,1,-1], 0])
# [1, 4, 4]
print(X[[0,1,-1], ::-1])
# [[3 2 1],
# [6 5 4],
# [6 5 4]]
print(X[[0,1,-1],[1,0,-1]])
# [2, 4, 6]
"""
* Diese Bezeichnung hat das gleiche Ergebnis wie die folgende.
np.array([X[0,1], X[1,0], X[-1,-1]])
"""
X = np.array([[1,2,3],[4,5,6]])
print(X > 4)
# [[False, False, False],
# [False, True, True]]
print(np.where(X > 4))
# (array([1, 1]), array([1, 2]))
print(X[X > 4])
# [5, 6]
print(X[np.where(X > 4)])
# [5, 6]
Holen Sie sich ndarray Informationen.
【shape
】
X = np.array([[1,2,3], [4,5,6]])
X.shape
# (2, 3)
【dtype
】
X = np.array([[1,2,3], [4,5,6]])
X.dtype
# dtype('int64')
【ndim
】
X = np.array([[1,2,3], [4,5,6]])
X.ndim
# 2
【size
】
X = np.array([[1,2,3], [4,5,6]])
X.size
# 6
Manipuliere den Ndarray.
【<ndarray>.flatten(order='C')
】
X = np.array([[1,2,3], [4,5,6]])
print(X.flatten())
# [1, 2, 3, 4, 5, 6]
【<ndarray>.reshape(shape, order='C')
】
X = np.array([1,2,3,4,5,6])
print(X.reshape((3,2)))
# [[1, 2],
# [3, 4],
# [5, 6]]
【sort(a, axis=-1, kind='quicksort', order=None)
】
X1 = np.array([[5,4,6], [3,1,2]])
X2 = np.sort(X1)
print(X1)
# [[5 4 6]
# [3 1 2]]
print(X2)
# [[4 5 6]
# [1 2 3]]
X3 = np.sort(X1, axis=0)
print(X3)
# [[3 1 2]
# [5 4 6]]
【<ndarray>.sort(axis=-1, kind='quicksort', order=None)
】
X = np.array([[5,4,6], [3,1,2]])
X.sort()
print(X)
# [4 5 6]
# [1 2 3]]
X.sort(axis=0)
print(X)
# [[3 1 2]
# [5 4 6]]
【<ndarray>.argsort(axis=-1, kind='quicksort', order=None)
】
X = np.array([[5,4,6], [3,1,2]])
idxs = X.argsort()
print(idxs)
# [[1 0 2]
# [1 2 0]]
idxs = X.argsort(axis=0)
print(idxs)
# [[1 1 1]
# [0 0 0]]
【<ndarray>.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)
】
X = np.array([[1,2,3], [4,5,6]])
print(X.dtype)
# int64
print(X)
# [[1 2 3]
# [4 5 6]]
X2 = X.astype(np.float64)
print(X2.dtype)
# float64
print(X2)
# [[1. 2. 3.]
# [4. 5. 6.]]
Führen Sie Matrixoperationen mit ndarray aus.
【<ndarray>.T
】
X = np.array([[1,2,3], [4,5,6]])
print(X.T)
# [[1, 4],
# [2, 5],
# [3, 6]]
【numpy.dot
】【<ndarray>.dot
】
X1 = np.array([[1, 2, 3], [4, 5, 6]])
X2 = np.array([[10, 20], [100, 200], [1000, 2000]])
print(np.dot(X1, X2))
# [[ 3210 6420]
# [ 6540 13080]]
print(X1.dot(X2))
# [[ 3210 6420]
# [ 6540 13080]]
【numpy.trace
】【<ndarray>.trace
】
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(np.trace(X))
# 15
print(X.trace())
# 15
【numpy.linalg.det
】
X1 = np.array([[3., 2.], [5., 4.]])
print(np.linalg.det(X1))
# 2.0000000000000013
【numpy.linalg.eig
】
X = np.array([[2, 0], [0, 0.25]])
print(np.linalg.eig(X))
# (array([2. , 0.25]), array([[1., 0.], [0., 1.]]))
【numpy.linalg.svd
】
X = np.array([[2, 0], [0, 0.25], [0, 1]])
print(np.linalg.svd(X))
# (array([[ 1., 0. , 0. ],
# [ 0., -0.24253563, -0.9701425 ],
# [ 0., -0.9701425 , 0.24253563]]),
# array([2., 1.03077641]),
# array([[ 1., 0.],
# [-0., -1.]]))
【numpy.linalg.inv
】
X = np.array([[1, 1], [1, -1]])
print(np.linalg.inv(X))
# [[ 0.5 0.5]
# [ 0.5 -0.5]]
【numpy.linalg.pinv
】
X = np.array([[1, 1], [1, -1], [1, 0]])
print(np.linalg.pinv(X))
# [[ 0.33333333 0.33333333 0.33333333]
# [ 0.5 -0.5 0. ]]
【numpy.linalg.qr
】
X = np.array([[1, 2], [3, 4], [5, 6]])
print(np.linalg.qr(X))
# (array([[-0.16903085, 0.89708523],
# [-0.50709255, 0.27602622],
# [-0.84515425, -0.34503278]]),
# array([[-5.91607978, -7.43735744],
# [ 0. , 0.82807867]]))
Arithmetische Operationen werden zwischen zwei ndarrays ausgeführt.
【add
】
a = np.array([[1, 2, 3], [4, 5, 6]])
print(np.add(a, 10))
# [[11 12 13]
# [14 15 16]]
print(a + 10)
# [[11 12 13]
# [14 15 16]]
print(np.add(a, [10, 20, 30]))
# [[11 22 33]
# [14 25 36]]
print(a + [10, 20, 30])
# [[11 22 33]
# [14 25 36]]
print(np.add(a, np.array([[10, 20, 30], [40, 50, 60]])))
# [[11 22 33]
# [44 55 66]]
print(a + np.array([[10, 20, 30], [40, 50, 60]]))
# [[11 22 33]
# [44 55 66]]
【subtract
】
a = np.array([[11, 22, 33], [44, 55, 66]])
print(np.subtract(a, 10))
# [[ 1 12 23]
# [34 45 56]]
print(a - 10)
# [[ 1 12 23]
# [34 45 56]]
print(np.subtract(a, [10, 20, 30]))
# [[ 1 2 3]
# [34 35 36]]
print(a - [10, 20, 30])
# [[ 1 2 3]
# [34 35 36]]
print(np.subtract(a, np.array([[10, 20, 30], [40, 50, 60]])))
# [[1 2 3]
# [4 5 6]]
print(a - np.array([[10, 20, 30], [40, 50, 60]]))
# [[1 2 3]
# [4 5 6]]
【multiply
】
a = np.array([[1, 2, 3], [4, 5, 6]])
print(np.multiply(a, 10))
# [[10 20 30]
# [40 50 60]]
print(a * 10)
# [[10 20 30]
# [40 50 60]]
print(np.multiply(a, [10, 20, 30]))
# [[ 10 40 90]
# [ 40 100 180]]
print(a * [10, 20, 30])
# [[ 10 40 90]
# [ 40 100 180]]
print(np.multiply(a, np.array([[10, 20, 30], [40, 50, 60]])))
# [[ 10 40 90]
# [160 250 360]]
print(a * np.array([[10, 20, 30], [40, 50, 60]]))
# [[ 10 40 90]
# [160 250 360]]
【divide
】
a = np.array([[10, 20, 30], [40, 50, 60]])
print(np.divide(a, 10))
# [[1. 2. 3.]
# [4. 5. 6.]]
print(a / 10)
# [[1. 2. 3.]
# [4. 5. 6.]]
print(np.divide(a, [10, 20, 30]))
# [[1. 1. 1. ]
# [4. 2.5 2. ]]
print(a / [10, 20, 30])
# [[1. 1. 1. ]
# [4. 2.5 2. ]]
print(np.divide(a, np.array([[10, 20, 30], [40, 50, 60]])))
# [[1. 1. 1.]
# [1. 1. 1.]]
print(a / np.array([[10, 20, 30], [40, 50, 60]]))
# [[1. 1. 1.]
# [1. 1. 1.]]
【floor_divide
】
a = np.array([[22, 33, 44], [45, 67, 89]])
print(np.floor_divide(a, 2))
# [[11 16 22]
# [22 33 44]]
print(a // 2)
# [[11 16 22]
# [22 33 44]]
print(np.floor_divide(a, [2, 3, 4]))
# [[11 11 11]
# [22 22 22]]
print(a // [2, 3, 4])
# [[11 11 11]
# [22 22 22]]
print(np.floor_divide(a, np.array([[2, 3, 4], [4, 6, 8]])))
# [[11 11 11]
# [11 11 11]]
print(a // np.array([[[2, 3, 4], [4, 6, 8]]]))
# [[11 11 11]
# [11 11 11]]
【mod
】
a = np.array([[22, 33, 44], [45, 67, 89]])
print(np.mod(a, 2))
# [[0 1 0]
# [1 1 1]]
print(a % 2)
# [[0 1 0]
# [1 1 1]]
print(np.mod(a, [2, 3, 4]))
# [[0 0 0]
# [1 1 1]]
print(a % [2, 3, 4])
# [[0 0 0]
# [1 1 1]]
print(np.mod(a, np.array([[2, 3, 4], [4, 6, 8]])))
# [[0 0 0]
# [1 1 1]]
print(a % np.array([[[2, 3, 4], [4, 6, 8]]]))
# [[0 0 0]
# [1 1 1]]
【power
】
a = np.array([[1, 2, 3], [4, 5, 6]])
print(np.power(a, 2))
# [[ 1 4 9]
# [16 25 36]]
print(a ** 2)
# [[ 1 4 9]
# [16 25 36]]
print(np.power(a, [2, 3, 4]))
# [[ 1 8 81]
# [ 16 125 1296]]
print(a ** [2, 3, 4])
# [[ 1 8 81]
# [ 16 125 1296]]
print(np.power(a, np.array([[2, 3, 4], [1/2, 1/3, 1/4]])))
# [[ 1. 8. 81. ]
# [ 2. 1.70997595 1.56508458]]
print(a ** np.array([[2, 3, 4], [1/2, 1/3, 1/4]]))
# [[ 1. 8. 81. ]
# [ 2. 1.70997595 1.56508458]]
Vergleichen Sie zwei ndarrays.
【greater
】
a1 = np.array([10, 10, 10, 10, 10])
a2 = np.array([9, 9.9, 10, 10.1, 11])
print(np.greater(a1, a2))
# [ True True False False False]
print(a1 > a2)
# [ True True False False False]
【greater_equal
】
a1 = np.array([10, 10, 10, 10, 10])
a2 = np.array([9, 9.9, 10, 10.1, 11])
print(np.greater_equal(a1, a2))
# [ True True True False False]
print(a1 >= a2)
# [ True True True False False]
【less
】
a1 = np.array([10, 10, 10, 10, 10])
a2 = np.array([9, 9.9, 10, 10.1, 11])
print(np.less(a1, a2))
# [False False False True True]
print(a1 < a2)
# [False False False True True]
【less_equal
】
a1 = np.array([10, 10, 10, 10, 10])
a2 = np.array([9, 9.9, 10, 10.1, 11])
print(np.less_equal(a1, a2))
# [False False True True True]
print(a1 <= a2)
# [False False True True True]
【equal
】
a1 = np.array([10, 10, 10, 10, 10])
a2 = np.array([9, 9.9, 10, 10.1, 11])
print(np.equal(a1, a2))
# [False False True False False]
print(a1 == a2)
# [False False True False False]
【not_equal
】
a1 = np.array([10, 10, 10, 10, 10])
a2 = np.array([9, 9.9, 10, 10.1, 11])
print(np.not_equal(a1, a2))
# [ True True False True True]
print(a1 != a2)
# [ True True False True True]
Führen Sie logische Operationen an zwei ndarrays aus.
【logical_and
】
a1 = np.array([True, False, True, False])
a2 = np.array([True, False, False, True])
print(np.logical_and(a1, a2))
# [ True False False False]
【logical_or
】
a1 = np.array([True, False, True, False])
a2 = np.array([True, False, False, True])
print(np.logical_or(a1, a2))
# [ True False True True]
【logical_xor
】
a1 = np.array([True, False, True, False])
a2 = np.array([True, False, False, True])
print(np.logical_xor(a1, a2))
# [False False True True]
【logical_not
】
a = np.array([True, False, True, False])
print(np.logical_not(a))
# [False True False True]
【<ndarray>.any()
】
a1 = np.array([0, 1, 0, 0])
print(a1.any())
# True
a2 = np.array([1, 1, 1, 1])
print(a2.any())
# True
a3 = np.array([0, 0, 0, 0])
print(a3.any())
# False
【<ndarray>.all()
】
a1 = np.array([0, 1, 0, 0])
print(a1.all())
# False
a2 = np.array([1, 1, 1, 1])
print(a2.all())
# True
a3 = np.array([0, 0, 0, 0])
print(a3.all())
# False
Führen Sie eine Set-Operation mit ndarray durch.
【union1d(ar1, ar2)
】
X = np.unique([1,2,3,4,5,6])
Y = np.unique([4,5,6,7,8,9])
Z = np.union1d(X,Y)
print(Z)
# [1 2 3 4 5 6 7 8 9]
【intersect1d(ar1, ar2)
】
X = np.unique([1,2,3,4,5,6])
Y = np.unique([4,5,6,7,8,9])
Z = np.intersect1d(X,Y)
print(Z)
# [4 5 6]
【setxor1d(ar1, ar2)
】
X = np.unique([1,2,3,4,5,6])
Y = np.unique([4,5,6,7,8,9])
Z = np.setxor1d(X,Y)
print(Z)
# [1 2 3 7 8 9]
【setdiff1d(ar1, ar2)
】
X = np.unique([1,2,3,4,5,6])
Y = np.unique([4,5,6,7,8,9])
Z = np.setdiff1d(X,Y)
print(Z)
# [1 2 3]
【in1d(ar1, ar2)
】
X = np.unique([1,2,3,4,5])
Y = np.unique([1,2,3])
Z = np.in1d(X,Y)
print(Z)
# [ True True True False False]
Extrahieren Sie den Maximalwert, den Minimalwert und den Code von ndarray.
【maximum
】
a1 = np.array([4, 2, np.nan])
a2 = np.array([3, 6, 5])
print(np.maximum(a1, a2))
# [ 4. 6. nan]
【fmax
】
a1 = np.array([4, 2, np.nan])
a2 = np.array([3, 6, 5])
print(np.fmax(a1, a2))
# [4. 6. 5.]
【minimum
】
a1 = np.array([4, 2, np.nan])
a2 = np.array([3, 6, 5])
print(np.minimum(a1, a2))
# [ 3. 2. nan]
【fmin
】
a1 = np.array([4, 2, np.nan])
a2 = np.array([3, 6, 5])
print(np.fmin(a1, a2))
# [3. 2. 5.]
【copysign
】
a1 = np.array([1, 2, 3, 4, 5])
a2 = np.array([0, -1, 1, 2, -2])
print(np.copysign(a1, a2))
# [ 1. -2. 3. 4. -5.]
Verarbeiten Sie für jeden Wert von ndarray den Wert nach dem Dezimalpunkt.
【ceil(ndarray)
】
y = np.array([-5.6, -5.5, -5.4, 0, 5.4, 5.5, 5.6])
z = np.ceil(y)
print(z)
# [-5. -5. -5. 0. 6. 6. 6.]
【floor(ndarray)
】
y = np.array([-5.6, -5.5, -5.4, 0, 5.4, 5.5, 5.6])
z = np.floor(y)
print(z)
# [-6. -6. -6. 0. 5. 5. 5.]
【rint(ndarray)
】
y = np.array([-5.6, -5.5, -5.4, 0, 5.4, 5.5, 5.6])
z = np.rint(y)
print(z)
# [-6. -6. -5. 0. 5. 6. 6.]
【modf(ndarray)
】
y = np.array([-3.6, -2.5, -1.4, 0, 1.4, 2.5, 3.6])
z = np.modf(y)
print(z)
# (array([-0.6, -0.5, -0.4, 0. , 0.4, 0.5, 0.6]), array([-3., -2., -1., 0., 1., 2., 3.]))
Berechnen Sie das Quadrat, die Quadratwurzel und den absoluten Wert für jeden Wert von ndarray.
【square(ndarray)
】
y = np.arange(1,6)
z = np.square(y)
print(z)
# [ 1 4 9 16 25]
z = y ** 2
print(z)
# [ 1 4 9 16 25]
【sqrt(ndarray)
】
y = np.array([1,4,9,16,25])
z = np.sqrt(y)
print(z)
# [1. 2. 3. 4. 5.]
z = y ** 0.5
print(z)
# [1. 2. 3. 4. 5.]
【abs(ndarray)
】
y = np.array([-1,-2,3,4,5j])
z = np.abs(y)
print(z)
# [1, 2, 3, 4, 5]
【fabs(ndarray)
】
y = np.array([-1,-2,3,4,-5])
z = np.fabs(y)
print(z)
# [1, 2, 3, 4, 5]
Berechnen Sie den Exponenten und den logarithmischen Wert für jeden Wert von ndarray.
【exp(ndarray)
】
y = np.arange(1,6)
z = np.exp(y)
print(z)
# [ 2.71828183 7.3890561 20.08553692 54.59815003 148.4131591 ]
print(np.e)
# 2.718281828459045
【log(ndarray)
】
y = np.e ** np.array([1, 2, 3, 4, 5])
z = np.log(y)
print(z)
# [1. 2. 3. 4. 5.]
【log10(ndarray)
】
y = 10 ** np.array([1, 2, 3, 4, 5])
z = np.log10(y)
print(z)
# [1. 2. 3. 4. 5.]
【log2(ndarray)
】
y = 2 ** np.array([1, 2, 3, 4, 5])
z = np.log2(y)
print(z)
# [1. 2. 3. 4. 5.]
Wenden Sie auf jeden Wert von ndarray eine Dreiecksfunktion an.
【sin(ndarray)
】
y = np.linspace(-1, 1, 5) * np.pi
print(np.sin(y))
# [-1.2246468e-16 -1.0000000e+00 0.0000000e+00 1.0000000e+00 1.2246468e-16]
【cos(ndarray)
】
y = np.linspace(-1, 1, 5) * np.pi
print(np.cos(y))
# [-1.000000e+00 6.123234e-17 1.000000e+00 6.123234e-17 -1.000000e+00]
【tan(ndarray)
】
y = np.linspace(-1, 1, 5) * np.pi
print(np.tan(y))
# [ 1.22464680e-16 -1.63312394e+16 0.00000000e+00 1.63312394e+16 -1.22464680e-16]
Wenden Sie auf jeden Wert von ndarray eine Bikurvenfunktion an.
【sinh(ndarray)
】
y = np.array([-np.inf, -2, -1, 0, 1, 2, np.inf])
print(np.sinh(y))
# [-inf -3.62686041 -1.17520119 0. 1.17520119 3.62686041 inf]
【cosh(ndarray)
】
y = np.array([-np.inf, -2, -1, 0, 1, 2, np.inf])
print(np.cosh(y))
# [inf 3.76219569 1.54308063 1. 1.54308063 3.76219569 inf]
【tanh(ndarray)
】
y = np.array([-np.inf, -2, -1, 0, 1, 2, np.inf])
print(np.tanh(y))
# [-1. -0.96402758 -0.76159416 0. 0.76159416 0.96402758 1.]
Wenden Sie die Funktion des umgekehrten Dreiecks auf jeden Wert von ndarray an.
【arcsin(ndarray)
】
y = np.linspace(-1, 1, 5)
print(np.arcsin(y))
# [-1.57079633 -0.52359878 0. 0.52359878 1.57079633]
【arccos(ndarray)
】
y = np.linspace(-1, 1, 5)
print(np.arccos(y))
# [3.14159265 2.0943951 1.57079633 1.04719755 0.]
【arctan(ndarray)
】
y = np.linspace(-1, 1, 5)
print(np.arctan(y))
# [-0.78539816 -0.46364761 0. 0.46364761 0.78539816]
Wenden Sie die inverse Bikurvenfunktion auf jeden Wert von ndarray an.
【arcsinh(ndarray)
】
y = np.array([-np.inf, -3.62686041, -1.17520119, 0., 1.17520119, 3.62686041, np.inf])
print(np.arcsinh(y))
# [-inf -2. -1. 0. 1. 2. inf]
【arccosh(ndarray)
】
y = np.array([1., 1.54308063, 3.76219569, np.inf])
print(np.arccosh(y))
# [ 0. 1. 2. inf]
【arctanh(ndarray)
】
y = np.array([-1., -0.96402758, -0.76159416, 0., 0.76159416, 0.96402758, 1.])
print(np.arctanh(y))
# [-inf -2. -1.00000001 0. 1.00000001 2. inf]
Generieren Sie Zufallszahlen mit Numpy.
【numpy.random.rand(d0, d1, ..., dn)
】
print(np.random.rand())
# 0.5504876218756463
print(np.random.rand(2))
# [0.70029403 0.48969378]
print(np.random.rand(2, 2))
# [[0.98181874 0.47001957]
# [0.79277853 0.12536121]]
【numpy.random.randint(low, high=None, size=None, dtype='l')
】
print(np.random.randint(1,4))
# 2
print(np.random.randint(1,4, 2))
# [2 2]
print(np.random.randint(1,4, (2, 2)))
# [[3 2]
# [3 1]]
【numpy.random.uniform(low=0.0, high=1.0, size=None)
】
print(np.random.uniform(1,4))
# 3.5515484791542056
print(np.random.uniform(1,4, 2))
# [1.51270014 3.02435494]
print(np.random.uniform(1,4, (2, 2)))
# [[3.47188029 1.17177563]
# [3.87198389 3.91458379]]
【numpy.random.randn(d0, d1, ..., dn)
】
print(np.random.randn())
# -0.5775065521096695
print(np.random.randn(2))
# [-1.50501689 1.46743032]
print(np.random.randn(2, 2))
# [[ 1.16357112 -0.24601519]
# [ 2.07269576 -0.39272309]]
【numpy.random.normal(loc=0.0, scale=1.0, size=None)
】
print(np.random.normal(50, 10))
# 63.47995333571061
print(np.random.normal(50, 10, (2, 2)))
# [[56.02364177 55.25423891]
# [45.44840171 29.8303964 ]]
print(np.random.normal((50, 0), (10, 1), (5, 2)))
# [[45.48754234 -0.74792452]
# [60.84696747 1.01209036]
# [42.38844146 -0.10453915]
# [39.77544056 1.22264549]
# [41.60250782 1.64150462]]
【numpy.random.binomial(n, p, size=None)
】
print(np.random.binomial(100, 0.5))
# 53
print(np.random.binomial(100, 0.5, (2, 2)))
# [[53 53]
# [48 50]]
print(np.random.binomial((100, 1000), (0.3, 0.7), (5, 2)))
# [[ 33 699]
# [ 30 660]
# [ 34 698]
# [ 26 688]
# [ 25 683]]
【numpy.random.beta(a, b, size=None)
】
print(np.random.beta(3, 5))
# 0.09838262724430759
print(np.random.beta(8, 2, (2, 2)))
# [[0.92800788 0.86391443]
# [0.67249524 0.97299346]]
print(np.random.beta((3, 8), (5, 2), (5, 2)))
# [[0.11825463 0.74320634]
# [0.24992266 0.79029969]
# [0.13345269 0.57807883]
# [0.32374525 0.92666103]
# [0.64669681 0.84867388]]
【numpy.random.chisquare(df, size=None)
print(np.random.chisquare(1))
# 0.05074259859574817
print(np.random.chisquare(5, (2, 2)))
# [[ 6.15617206 5.54859677]
# [ 2.60704305 10.35079434]]
print(np.random.chisquare((1, 5), (5, 2)))
# [[2.3942405 6.43803251]
# [1.97544231 2.73456762]
# [0.63389405 7.81526263]
# [0.05035459 7.8224598 ]
# [1.01597309 1.46098368]]
【numpy.random.gamma(shape, scale=1.0, size=None)
】
print(np.random.gamma(1, 2))
# 0.48471788864900295
print(np.random.gamma(9, 1, (2, 2)))
# [[10.71101589 16.68686166]
# [ 5.22150652 5.87160223]]
print(np.random.gamma((1, 9), (2, 1), (5, 2)))
# [[ 3.4102224 6.31938602]
# [ 0.03882968 7.71108072]
# [ 2.62781738 10.70853193]
# [ 5.07929584 5.83489052]
# [ 1.50577929 11.21572879]]
Berechnen Sie die Basisstatistik aus dem Wert von ndarray.
【max
】
a = np.array([10, 20, 30, 40, 50])
print(np.max(a))
# 50
【argmax
】
a = np.array([10, 20, 30, 40, 50])
print(np.argmax(a))
# 4
【min
】
a = np.array([10, 20, 30, 40, 50])
print(np.min(a))
# 10
【argmin
】
a = np.array([10, 20, 30, 40, 50])
print(np.argmin(a))
# 0
【sum
】
a = np.array([10, 20, 30, 40, 50])
print(np.sum(a))
# 150
【mean
】
a = np.array([10, 20, 30, 40, 50])
print(np.mean(a))
# 30.0
【var
】
a = np.array([10, 20, 30, 40, 50])
print(np.var(a))
# 200.0
【std
】
a = np.array([10, 20, 30, 40, 50])
print(np.std(a))
# 14.142135623730951
【cumsum
】
a = np.array([10, 20, 30, 40, 50])
print(np.cumsum(a))
# [ 10 30 60 100 150]
【cumsum
】
a = np.array([10, 20, 30, 40, 50])
print(np.cumprod(a))
# [ 10 200 6000 240000 12000000]
Führt eine Wertüberprüfungsverarbeitung durch.
【isnan(ndarray)
】
y = np.array([np.nan, np.inf, 0, 1])
print(np.isnan(y))
# [ True False False False]
【isfinite(ndarray)
】
y = np.array([np.nan, np.inf, -np.inf, 0, 1])
print(np.isfinite(y))
# [False False False True True]
【isfin(ndarray)
】
y = np.array([np.nan, np.inf, -np.inf, 0, 1])
print(np.isinf(y))
# [False True True False False]
【sign(ndarray)
】
y = np.array([-np.inf, -5, 0, 5, np.inf])
print(np.sign(y))
# [-1. -1. 0. 1. 1.]
Dieser Artikel ist ein Migrationsartikel aus dem Blog "Technische Hinweise für Hausingenieure". Der vorherige Blog wird gelöscht.
Recommended Posts