[PYTHON] pix2pix tensorflow2 Aufzeichnung von Versuch und Irrtum

Überblick

Referenz: https://www.tensorflow.org/tutorials/generative/pix2pix In diesem Abschnitt wird beschrieben, wie Sie mit Fehlern umgehen, die beim Erstellen oder Ausführen der Umgebung bis zur Ausführung des obigen Beispielcodes für den pix2-Pixeltensorfluss auftreten. Ich habe keine besonderen Kenntnisse auf diesem Gebiet, daher ist unklar, ob die beschriebene Lösung die optimale Lösung ist.

Systemkonfiguration

OS: Windows10 home CPU: Ryzen3 3200 GPU: RTX-2060 Editor: Visual Studio-Code

Korrespondenzinhalt

・ Ryzen3 3200 ⇒ Fehler in Tensorflow 2.1.0 ⇒ Tensorflow 2.0.0 aufgetreten (Information, dass Tensorflow 2.1 nur auf der neuesten CPU funktioniert. Wahrheit unbekannt. Quelle vergessen) ・ Tensorflow 2.0.0 ⇒ CUDA 10.0, cuDNN7.4.1 ⇒ gemäß Korrespondenztabelle auf cuDNN 7.6.0 geändert (Code-Ausführungsfehler) Referenz: https://qiita.com/rhene/items/31bf4713b9dbda28bcc1 ・ Beim Sichern des GPU-Speichers ist ein Fehler aufgetreten. ⇒ Dem Beispielcode wurde entsprechender Code hinzugefügt Referenz: https://qiita.com/studio_haneya/items/4dfaf2fb2ac44818e7e0

#Fehlermeldung
tensorflow.python.framework.errors_impl.UnknownError: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, 
so try looking to see if a warning log message was printed above. [Op:Conv2D]
#Entsprechender Code
physical_devices = tf.config.experimental.list_physical_devices('GPU')
if len(physical_devices) > 0:
    for k in range(len(physical_devices)):
        #tf.config.experimental.per_process_gpu_memory_fraction = 0.8
        tf.config.experimental.set_memory_growth(physical_devices[k], True)
        print('memory growth:', tf.config.experimental.get_memory_growth(physical_devices[k]))
else:
    print("Not enough GPU hardware devices available")

-Fehler, wenn graphviz beim Ausführen von Code nicht vorhanden ist ⇒ Installation von Graphviz 2.3.8 Referenz: http://ruby.kyoto-wu.ac.jp/info-com/Softwares/Graphviz/

Ganzer Code

import tensorflow as tf

import os
import time

from matplotlib import pyplot as plt
from IPython import display

#Korrespondenzteil im GPU-Fehler
physical_devices = tf.config.experimental.list_physical_devices('GPU')
if len(physical_devices) > 0:
    for k in range(len(physical_devices)):
        tf.config.experimental.set_memory_growth(physical_devices[k], True)
        print('memory growth:', tf.config.experimental.get_memory_growth(physical_devices[k]))
else:
    print("Not enough GPU hardware devices available")


#Im Folgenden wird der Code auf der offiziellen TensorFlow-Website nicht geändert
_URL = 'https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/facades.tar.gz'

path_to_zip = tf.keras.utils.get_file('facades.tar.gz',
                                      origin=_URL,
                                      extract=True)

PATH = os.path.join(os.path.dirname(path_to_zip), 'facades/')

BUFFER_SIZE = 400
BATCH_SIZE = 1
IMG_WIDTH = 256
IMG_HEIGHT = 256

def load(image_file):
    image = tf.io.read_file(image_file)
    image = tf.image.decode_jpeg(image)

    w = tf.shape(image)[1]

    w = w // 2
    real_image = image[:, :w, :]
    input_image = image[:, w:, :]

    input_image = tf.cast(input_image, tf.float32)
    real_image = tf.cast(real_image, tf.float32)

    return input_image, real_image

inp, re = load(PATH+'train/100.jpg')
# casting to int for matplotlib to show the image
plt.figure()
plt.imshow(inp/255.0)
plt.figure()
plt.imshow(re/255.0)

def resize(input_image, real_image, height, width):
    input_image = tf.image.resize(input_image, [height, width],
                                method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
    real_image = tf.image.resize(real_image, [height, width],
                                method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)

    return input_image, real_image

def random_crop(input_image, real_image):
    stacked_image = tf.stack([input_image, real_image], axis=0)
    cropped_image = tf.image.random_crop(
        stacked_image, size=[2, IMG_HEIGHT, IMG_WIDTH, 3])

    return cropped_image[0], cropped_image[1]

# normalizing the images to [-1, 1]

def normalize(input_image, real_image):
    input_image = (input_image / 127.5) - 1
    real_image = (real_image / 127.5) - 1

    return input_image, real_image

@tf.function()
def random_jitter(input_image, real_image):
    # resizing to 286 x 286 x 3
    input_image, real_image = resize(input_image, real_image, 286, 286)

    # randomly cropping to 256 x 256 x 3
    input_image, real_image = random_crop(input_image, real_image)

    if tf.random.uniform(()) > 0.5:
        # random mirroring
        input_image = tf.image.flip_left_right(input_image)
        real_image = tf.image.flip_left_right(real_image)

    return input_image, real_image

plt.figure(figsize=(6, 6))
for i in range(4):
    rj_inp, rj_re = random_jitter(inp, re)
    plt.subplot(2, 2, i+1)
    plt.imshow(rj_inp/255.0)
    plt.axis('off')
plt.show()

def load_image_train(image_file):
    input_image, real_image = load(image_file)
    input_image, real_image = random_jitter(input_image, real_image)
    input_image, real_image = normalize(input_image, real_image)

    return input_image, real_image

def load_image_test(image_file):
    input_image, real_image = load(image_file)
    input_image, real_image = resize(input_image, real_image,
                                     IMG_HEIGHT, IMG_WIDTH)
    input_image, real_image = normalize(input_image, real_image)

    return input_image, real_image

train_dataset = tf.data.Dataset.list_files(PATH+'train/*.jpg')
train_dataset = train_dataset.map(load_image_train,
                                  num_parallel_calls=tf.data.experimental.AUTOTUNE)
train_dataset = train_dataset.shuffle(BUFFER_SIZE)
train_dataset = train_dataset.batch(BATCH_SIZE)

test_dataset = tf.data.Dataset.list_files(PATH+'test/*.jpg')
test_dataset = test_dataset.map(load_image_test)
test_dataset = test_dataset.batch(BATCH_SIZE)

OUTPUT_CHANNELS = 3

def downsample(filters, size, apply_batchnorm=True):
    initializer = tf.random_normal_initializer(0., 0.02)

    result = tf.keras.Sequential()
    result.add(
        tf.keras.layers.Conv2D(filters, size, strides=2, padding='same',
                            kernel_initializer=initializer, use_bias=False))

    if apply_batchnorm:
        result.add(tf.keras.layers.BatchNormalization())

    result.add(tf.keras.layers.LeakyReLU())

    return result

down_model = downsample(3, 4)
down_result = down_model(tf.expand_dims(inp, 0))
print (down_result.shape)

def upsample(filters, size, apply_dropout=False):
    initializer = tf.random_normal_initializer(0., 0.02)

    result = tf.keras.Sequential()
    result.add(
        tf.keras.layers.Conv2DTranspose(filters, size, strides=2,
                                        padding='same',
                                        kernel_initializer=initializer,
                                        use_bias=False))

    result.add(tf.keras.layers.BatchNormalization())

    if apply_dropout:
        result.add(tf.keras.layers.Dropout(0.5))

    result.add(tf.keras.layers.ReLU())

    return result

up_model = upsample(3, 4)
up_result = up_model(down_result)
print (up_result.shape)

def Generator():
    inputs = tf.keras.layers.Input(shape=[256,256,3])

    down_stack = [
        downsample(64, 4, apply_batchnorm=False), # (bs, 128, 128, 64)
        downsample(128, 4), # (bs, 64, 64, 128)
        downsample(256, 4), # (bs, 32, 32, 256)
        downsample(512, 4), # (bs, 16, 16, 512)
        downsample(512, 4), # (bs, 8, 8, 512)
        downsample(512, 4), # (bs, 4, 4, 512)
        downsample(512, 4), # (bs, 2, 2, 512)
        downsample(512, 4), # (bs, 1, 1, 512)
    ]

    up_stack = [
        upsample(512, 4, apply_dropout=True), # (bs, 2, 2, 1024)
        upsample(512, 4, apply_dropout=True), # (bs, 4, 4, 1024)
        upsample(512, 4, apply_dropout=True), # (bs, 8, 8, 1024)
        upsample(512, 4), # (bs, 16, 16, 1024)
        upsample(256, 4), # (bs, 32, 32, 512)
        upsample(128, 4), # (bs, 64, 64, 256)
        upsample(64, 4), # (bs, 128, 128, 128)
    ]

    initializer = tf.random_normal_initializer(0., 0.02)
    last = tf.keras.layers.Conv2DTranspose(OUTPUT_CHANNELS, 4,
                                            strides=2,
                                            padding='same',
                                            kernel_initializer=initializer,
                                            activation='tanh') # (bs, 256, 256, 3)

    x = inputs

    # Downsampling through the model
    skips = []
    for down in down_stack:
        x = down(x)
        skips.append(x)

    skips = reversed(skips[:-1])

    # Upsampling and establishing the skip connections
    for up, skip in zip(up_stack, skips):
        x = up(x)
        x = tf.keras.layers.Concatenate()([x, skip])

    x = last(x)

    return tf.keras.Model(inputs=inputs, outputs=x)

generator = Generator()
tf.keras.utils.plot_model(generator, show_shapes=True, dpi=64)

gen_output = generator(inp[tf.newaxis,...], training=False)
plt.imshow(gen_output[0,...])

LAMBDA = 100

def generator_loss(disc_generated_output, gen_output, target):
    gan_loss = loss_object(tf.ones_like(disc_generated_output), disc_generated_output)

    # mean absolute error
    l1_loss = tf.reduce_mean(tf.abs(target - gen_output))

    total_gen_loss = gan_loss + (LAMBDA * l1_loss)

    return total_gen_loss, gan_loss, l1_loss

def Discriminator():
    initializer = tf.random_normal_initializer(0., 0.02)

    inp = tf.keras.layers.Input(shape=[256, 256, 3], name='input_image')
    tar = tf.keras.layers.Input(shape=[256, 256, 3], name='target_image')

    x = tf.keras.layers.concatenate([inp, tar]) # (bs, 256, 256, channels*2)

    down1 = downsample(64, 4, False)(x) # (bs, 128, 128, 64)
    down2 = downsample(128, 4)(down1) # (bs, 64, 64, 128)
    down3 = downsample(256, 4)(down2) # (bs, 32, 32, 256)

    zero_pad1 = tf.keras.layers.ZeroPadding2D()(down3) # (bs, 34, 34, 256)
    conv = tf.keras.layers.Conv2D(512, 4, strides=1,
                                    kernel_initializer=initializer,
                                    use_bias=False)(zero_pad1) # (bs, 31, 31, 512)

    batchnorm1 = tf.keras.layers.BatchNormalization()(conv)

    leaky_relu = tf.keras.layers.LeakyReLU()(batchnorm1)

    zero_pad2 = tf.keras.layers.ZeroPadding2D()(leaky_relu) # (bs, 33, 33, 512)

    last = tf.keras.layers.Conv2D(1, 4, strides=1,
                                    kernel_initializer=initializer)(zero_pad2) # (bs, 30, 30, 1)

    return tf.keras.Model(inputs=[inp, tar], outputs=last)

discriminator = Discriminator()
tf.keras.utils.plot_model(discriminator, show_shapes=True, dpi=64)

disc_out = discriminator([inp[tf.newaxis,...], gen_output], training=False)
plt.imshow(disc_out[0,...,-1], vmin=-20, vmax=20, cmap='RdBu_r')
plt.colorbar()

loss_object = tf.keras.losses.BinaryCrossentropy(from_logits=True)

def discriminator_loss(disc_real_output, disc_generated_output):
    real_loss = loss_object(tf.ones_like(disc_real_output), disc_real_output)

    generated_loss = loss_object(tf.zeros_like(disc_generated_output), disc_generated_output)

    total_disc_loss = real_loss + generated_loss

    return total_disc_loss

generator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
discriminator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)

checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
                                 discriminator_optimizer=discriminator_optimizer,
                                 generator=generator,
                                 discriminator=discriminator)

def generate_images(model, test_input, tar):
    prediction = model(test_input, training=True)
    plt.figure(figsize=(15,15))

    display_list = [test_input[0], tar[0], prediction[0]]
    title = ['Input Image', 'Ground Truth', 'Predicted Image']

    for i in range(3):
        plt.subplot(1, 3, i+1)
        plt.title(title[i])
        # getting the pixel values between [0, 1] to plot it.
        plt.imshow(display_list[i] * 0.5 + 0.5)
        plt.axis('off')
    plt.show()

for example_input, example_target in test_dataset.take(1):
    generate_images(generator, example_input, example_target)

EPOCHS = 150

import datetime
log_dir="logs/"

summary_writer = tf.summary.create_file_writer(
    log_dir + "fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))

@tf.function
def train_step(input_image, target, epoch):
    with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
        gen_output = generator(input_image, training=True)

        disc_real_output = discriminator([input_image, target], training=True)
        disc_generated_output = discriminator([input_image, gen_output], training=True)

        gen_total_loss, gen_gan_loss, gen_l1_loss = generator_loss(disc_generated_output, gen_output, target)
        disc_loss = discriminator_loss(disc_real_output, disc_generated_output)

    generator_gradients = gen_tape.gradient(gen_total_loss,
                                            generator.trainable_variables)
    discriminator_gradients = disc_tape.gradient(disc_loss,
                                                discriminator.trainable_variables)

    generator_optimizer.apply_gradients(zip(generator_gradients,
                                            generator.trainable_variables))
    discriminator_optimizer.apply_gradients(zip(discriminator_gradients,
                                                discriminator.trainable_variables))

    with summary_writer.as_default():
        tf.summary.scalar('gen_total_loss', gen_total_loss, step=epoch)
        tf.summary.scalar('gen_gan_loss', gen_gan_loss, step=epoch)
        tf.summary.scalar('gen_l1_loss', gen_l1_loss, step=epoch)
        tf.summary.scalar('disc_loss', disc_loss, step=epoch)

def fit(train_ds, epochs, test_ds):
    for epoch in range(epochs):
        start = time.time()

        display.clear_output(wait=True)

        for example_input, example_target in test_ds.take(1):
            generate_images(generator, example_input, example_target)
            print("Epoch: ", epoch)

        # Train
        for n, (input_image, target) in train_ds.enumerate():
            print('.', end='')
        if (n+1) % 100 == 0:
            print()
        train_step(input_image, target, epoch)
        print()

        # saving (checkpoint) the model every 20 epochs
        if (epoch + 1) % 20 == 0:
            checkpoint.save(file_prefix = checkpoint_prefix)

        print ('Time taken for epoch {} is {} sec\n'.format(epoch + 1,
                                                            time.time()-start))
    checkpoint.save(file_prefix = checkpoint_prefix)

# %load_ext tensorboard
# %tensorboard --logdir {log_dir}

fit(train_dataset, EPOCHS, test_dataset)

Recommended Posts

pix2pix tensorflow2 Aufzeichnung von Versuch und Irrtum
Visualisierung von CNN-Feature-Maps und -Filtern (Tensorflow 2.0)
Rezeptsammlung zum Vergleich der Versionen 1 und 2 von TensorFlow (Teil 1)
Aufzeichnung der TensorFlow Mnist Expert Edition (Visualisierung von TensorBoard)
Zusammenfassung der Fehlerbehandlungsmethoden bei der Installation von TensorFlow (2)
Eine Geschichte von Versuch und Irrtum beim Versuch, eine dynamische Benutzergruppe in Slack zu erstellen
Versuch und Irrtum, um die Erzeugung von Wärmekarten zu beschleunigen
Versuch und Irrtum, um Android-Screenshots zu beschleunigen
Über Importfehler von numpy und scipy in anaconda
[Lüftersteuerung] Grundeinstellung von Fancontorl und Fehlerbehandlung
Höchstwahrscheinlich Schätzung des Mittelwerts und der Varianz mit TensorFlow
[Python] Typfehler: Zusammenfassung der Ursachen und Abhilfemaßnahmen für 'Kein Typ'
Hinweis: CGI (während des Versuchs und Irrtums) in der Vagrant-Umgebung
DNN (Deep Learning) Library: Vergleich von Chainer und TensorFlow (1)
Tensorflow / Keras-Zusammenfassung
pytube Ausführung und Fehler
Golang Fehler und Panik
Beziehungs- und Approximationsfehler der Binomialverteilung, Poisson-Verteilung, Normalverteilung, supergeometrische Verteilung