** * Dieser Artikel ist von Udemy "[Einführung in Python3, unterrichtet von aktiven Silicon Valley-Ingenieuren + Anwendung + Code-Stil im amerikanischen Silicon Valley-Stil](https://www.udemy.com/course/python-beginner/" Einführung in Python3, unterrichtet von aktiven Silicon Valley-Ingenieuren + Anwendung + Code-Stil im amerikanischen Silicon Valley-Stil ")" Es ist eine Klassennotiz für mich nach dem Kurs von. Es ist mit Genehmigung des Ausbilders Jun Sakai für die Öffentlichkeit zugänglich. ** **.
division_integer
>>> 17 // 3
result
5
Mit //
17÷3 = 5.6666666
Gibt den ganzzahligen Teil von zurück.
division_remainder
>>> 17 % 3
result
2
Mit "%" 17 ÷ 3 = 5 zu viel 2 Es wird zu viel Teil zurückgegeben.
exponentiation
>>> 2 ** 10
result
1024
**
entspricht "^".
use_alphabet
>>> x = 5
>>> y = 2
>>> x * y
result
10
Sie können ein Zeichen durch einen numerischen Wert ersetzen und dieses Zeichen für die Berechnung verwenden.
use_alphabet_error
>>> a
result
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'a' is not defined
Ein Fehler tritt auf, wenn Sie ein Zeichen verwenden, dem nichts zugewiesen wurde.
round
>>> pie = 3.14159265358979
>>> round(pie, 2)
result
3.14
Mit round (pie, 2)
kann der dem pie zugewiesene Wert auf die zweite Stelle nach dem Dezimalpunkt gerundet werden.
math_library
import math
x = math.sqrt(25)
print(x)
y = math.log(2)
print(y)
result
5.0
0.6931471805599453
math.sqrt ()
ist √,
math.log ()
wird zu einem natürlichen Logarithmus (ln).
math_library_help
import math
help(math)
result
Help on module math:
NAME
math
MODULE REFERENCE
https://docs.python.org/3.7/library/math
The following documentation is automatically generated from the Python
source files. It may be incomplete, incorrect or include features that
are considered implementation detail and may vary between Python
implementations. When in doubt, consult the module reference at the
location listed above.
DESCRIPTION
This module provides access to the mathematical functions
defined by the C standard.
FUNCTIONS
acos(x, /)
Return the arc cosine (measured in radians) of x.
acosh(x, /)
Return the inverse hyperbolic cosine of x.
asin(x, /)
Return the arc sine (measured in radians) of x.
asinh(x, /)
Return the inverse hyperbolic sine of x.
atan(x, /)
Return the arc tangent (measured in radians) of x.
atan2(y, x, /)
Return the arc tangent (measured in radians) of y/x.
Unlike atan(y/x), the signs of both x and y are considered.
atanh(x, /)
Return the inverse hyperbolic tangent of x.
ceil(x, /)
Return the ceiling of x as an Integral.
This is the smallest integer >= x.
copysign(x, y, /)
Return a float with the magnitude (absolute value) of x but the sign of y.
On platforms that support signed zeros, copysign(1.0, -0.0)
returns -1.0.
cos(x, /)
Return the cosine of x (measured in radians).
cosh(x, /)
Return the hyperbolic cosine of x.
degrees(x, /)
Convert angle x from radians to degrees.
erf(x, /)
Error function at x.
erfc(x, /)
Complementary error function at x.
exp(x, /)
Return e raised to the power of x.
expm1(x, /)
Return exp(x)-1.
This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.
fabs(x, /)
Return the absolute value of the float x.
factorial(x, /)
Find x!.
Raise a ValueError if x is negative or non-integral.
floor(x, /)
Return the floor of x as an Integral.
This is the largest integer <= x.
fmod(x, y, /)
Return fmod(x, y), according to platform C.
x % y may differ.
frexp(x, /)
Return the mantissa and exponent of x, as pair (m, e).
m is a float and e is an int, such that x = m * 2.**e.
If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.
fsum(seq, /)
Return an accurate floating point sum of values in the iterable seq.
Assumes IEEE-754 floating point arithmetic.
gamma(x, /)
Gamma function at x.
gcd(x, y, /)
greatest common divisor of x and y
hypot(x, y, /)
Return the Euclidean distance, sqrt(x*x + y*y).
isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
Determine whether two floating point numbers are close in value.
rel_tol
maximum difference for being considered "close", relative to the
magnitude of the input values
abs_tol
maximum difference for being considered "close", regardless of the
magnitude of the input values
Return True if a is close in value to b, and False otherwise.
For the values to be considered close, the difference between them
must be smaller than at least one of the tolerances.
-inf, inf and NaN behave similarly to the IEEE 754 Standard. That
is, NaN is not close to anything, even itself. inf and -inf are
only close to themselves.
isfinite(x, /)
Return True if x is neither an infinity nor a NaN, and False otherwise.
isinf(x, /)
Return True if x is a positive or negative infinity, and False otherwise.
isnan(x, /)
Return True if x is a NaN (not a number), and False otherwise.
ldexp(x, i, /)
Return x * (2**i).
This is essentially the inverse of frexp().
lgamma(x, /)
Natural logarithm of absolute value of Gamma function at x.
log(...)
log(x, [base=math.e])
Return the logarithm of x to the given base.
If the base not specified, returns the natural logarithm (base e) of x.
log10(x, /)
Return the base 10 logarithm of x.
log1p(x, /)
Return the natural logarithm of 1+x (base e).
The result is computed in a way which is accurate for x near zero.
log2(x, /)
Return the base 2 logarithm of x.
modf(x, /)
Return the fractional and integer parts of x.
Both results carry the sign of x and are floats.
pow(x, y, /)
Return x**y (x to the power of y).
radians(x, /)
Convert angle x from degrees to radians.
remainder(x, y, /)
Difference between x and the closest integer multiple of y.
Return x - n*y where n*y is the closest integer multiple of y.
In the case where x is exactly halfway between two multiples of
y, the nearest even value of n is used. The result is always exact.
sin(x, /)
Return the sine of x (measured in radians).
sinh(x, /)
Return the hyperbolic sine of x.
sqrt(x, /)
Return the square root of x.
tan(x, /)
Return the tangent of x (measured in radians).
tanh(x, /)
Return the hyperbolic tangent of x.
trunc(x, /)
Truncates the Real x to the nearest Integral toward 0.
Uses the __trunc__ magic method.
DATA
e = 2.718281828459045
inf = inf
nan = nan
pi = 3.141592653589793
tau = 6.283185307179586
Sie können auch Hilfe von der Bibliothek erhalten. Mehr zur Bibliothek in einer späteren Lektion.
Recommended Posts