[PYTHON] Berechnen Sie die Ähnlichkeit zwischen Sätzen mit Doc2Vec, einer Weiterentwicklung von Word2Vec

Basierend auf der Technologie "Word2Vec", die von einem Forscher in den USA bei Google entwickelt wurde, habe ich versucht, mit der Technologie "Doc2Vec" zu spielen, die als Vektor verwendet werden kann, indem nicht nur "Wörtern", sondern auch "Dokumenten" eine Bedeutung gegeben wird.

Überprüfung von Word2Vec

Ich habe es in der Vergangenheit auf Qiita gepostet, also werde ich den Link posten. http://qiita.com/okappy/items/e16639178ba85edfee72

Was ist Doc2Vec?

Word2Vec betrachtet Word als Vektor, aber Doc2Vec (Paragraph2Vec) sieht Document als eine Menge von Word und weist einen Vektor zu, so dass Ähnlichkeit zwischen Dokumenten und Vektorberechnung realisiert werden kann.

Zum Beispiel kann die Ähnlichkeit zwischen Nachrichtenartikeln, die Ähnlichkeit zwischen Lebensläufen, die Ähnlichkeit zwischen Büchern und natürlich die Ähnlichkeit zwischen dem Profil einer Person und einem Buch berechnet werden. Ist das Ziel.

Technisch

Ich werde herum verwenden.

Was ist Gensim?

Eine Bibliothek zur Verarbeitung natürlicher Sprache, die von Python aus verarbeitet werden kann Die Funktionen umfassen Folgendes.

offizielle Seite von gensim http://radimrehurek.com/gensim/

Versuchen Sie tatsächlich, die Ähnlichkeit zwischen Dokumenten zu zeigen

Dieses Mal werden wir unter Verwendung von Facebook-Daten den von einem Benutzer auf Facebook veröffentlichten Text und den Titel des freigegebenen Links als ein Dokument betrachten und versuchen, die Ähnlichkeit zwischen den Dokumenten (kurz, zwischen Benutzern) aufzuzeigen. ..

Implementierung (Vorbereitung)

■ Installieren Sie Scipy

pip install scipy

■ Installation von Gensim

pip install gensim

■ Passen Sie doc2vec.py an

__ Änderungen ① __ Mit der Standardeinstellung doc2vec.py konnte die Beschriftung zum Zeitpunkt der Antwort nicht angepasst werden Ich habe es so geändert, dass das Ergebnis mit dem Set-Label aufgerufen werden kann.

__ Änderungen ② __ Welche Ähnlichkeiten aufweist das Dokument standardmäßig in doc2vec.py? Wenn Sie darauf drücken, werden sowohl das Dokument als auch das Wort ausgegeben. Daher habe ich auch eine Methode erstellt, um nur Dokumente mit ähnlichen Dokumenten auszugeben.

doc2vec.py


#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (C) 2013 Radim Rehurek <[email protected]>
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html


"""
Deep learning via the distributed memory and distributed bag of words models from
[1]_, using either hierarchical softmax or negative sampling [2]_ [3]_.

**Make sure you have a C compiler before installing gensim, to use optimized (compiled)
doc2vec training** (70x speedup [blog]_).

Initialize a model with e.g.::

>>> model = Doc2Vec(sentences, size=100, window=8, min_count=5, workers=4)

Persist a model to disk with::

>>> model.save(fname)
>>> model = Doc2Vec.load(fname)  # you can continue training with the loaded model!

The model can also be instantiated from an existing file on disk in the word2vec C format::

  >>> model = Doc2Vec.load_word2vec_format('/tmp/vectors.txt', binary=False)  # C text format
  >>> model = Doc2Vec.load_word2vec_format('/tmp/vectors.bin', binary=True)  # C binary format

.. [1] Quoc Le and Tomas Mikolov. Distributed Representations of Sentences and Documents. http://arxiv.org/pdf/1405.4053v2.pdf
.. [2] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Representations in Vector Space. In Proceedings of Workshop at ICLR, 2013.
.. [3] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words and Phrases and their Compositionality.
       In Proceedings of NIPS, 2013.
.. [blog] Optimizing word2vec in gensim, http://radimrehurek.com/2013/09/word2vec-in-python-part-two-optimizing/

"""

import logging
import os

try:
    from queue import Queue
except ImportError:
    from Queue import Queue

from numpy import zeros, random, sum as np_sum

logger = logging.getLogger(__name__)

from gensim import utils  # utility fnc for pickling, common scipy operations etc
from gensim.models.word2vec import Word2Vec, Vocab, train_cbow_pair, train_sg_pair

try:
    from gensim.models.doc2vec_inner import train_sentence_dbow, train_sentence_dm, FAST_VERSION
except:
    # failed... fall back to plain numpy (20-80x slower training than the above)
    FAST_VERSION = -1

    def train_sentence_dbow(model, sentence, lbls, alpha, work=None, train_words=True, train_lbls=True):
        """
        Update distributed bag of words model by training on a single sentence.

        The sentence is a list of Vocab objects (or None, where the corresponding
        word is not in the vocabulary. Called internally from `Doc2Vec.train()`.

        This is the non-optimized, Python version. If you have cython installed, gensim
        will use the optimized version from doc2vec_inner instead.

        """
        neg_labels = []
        if model.negative:
            # precompute negative labels
            neg_labels = zeros(model.negative + 1)
            neg_labels[0] = 1.0

        for label in lbls:
            if label is None:
                continue  # OOV word in the input sentence => skip
            for word in sentence:
                if word is None:
                    continue  # OOV word in the input sentence => skip
                train_sg_pair(model, word, label, alpha, neg_labels, train_words, train_lbls)

        return len([word for word in sentence if word is not None])

    def train_sentence_dm(model, sentence, lbls, alpha, work=None, neu1=None, train_words=True, train_lbls=True):
        """
        Update distributed memory model by training on a single sentence.

        The sentence is a list of Vocab objects (or None, where the corresponding
        word is not in the vocabulary. Called internally from `Doc2Vec.train()`.

        This is the non-optimized, Python version. If you have a C compiler, gensim
        will use the optimized version from doc2vec_inner instead.

        """
        lbl_indices = [lbl.index for lbl in lbls if lbl is not None]
        lbl_sum = np_sum(model.syn0[lbl_indices], axis=0)
        lbl_len = len(lbl_indices)
        neg_labels = []
        if model.negative:
            # precompute negative labels
            neg_labels = zeros(model.negative + 1)
            neg_labels[0] = 1.

        for pos, word in enumerate(sentence):
            if word is None:
                continue  # OOV word in the input sentence => skip
            reduced_window = random.randint(model.window)  # `b` in the original doc2vec code
            start = max(0, pos - model.window + reduced_window)
            window_pos = enumerate(sentence[start : pos + model.window + 1 - reduced_window], start)
            word2_indices = [word2.index for pos2, word2 in window_pos if (word2 is not None and pos2 != pos)]
            l1 = np_sum(model.syn0[word2_indices], axis=0) + lbl_sum  # 1 x layer1_size
            if word2_indices and model.cbow_mean:
                l1 /= (len(word2_indices) + lbl_len)
            neu1e = train_cbow_pair(model, word, word2_indices, l1, alpha, neg_labels, train_words, train_words)
            if train_lbls:
                model.syn0[lbl_indices] += neu1e

        return len([word for word in sentence if word is not None])


class LabeledSentence(object):
    """
    A single labeled sentence = text item.
    Replaces "sentence as a list of words" from Word2Vec.

    """
    def __init__(self, words, labels):
        """
        `words` is a list of tokens (unicode strings), `labels` a
        list of text labels associated with this text.

        """
        self.words = words
        self.labels = labels

    def __str__(self):
        return '%s(%s, %s)' % (self.__class__.__name__, self.words, self.labels)


class Doc2Vec(Word2Vec):
    """Class for training, using and evaluating neural networks described in http://arxiv.org/pdf/1405.4053v2.pdf"""
    def __init__(self, sentences=None, size=300, alpha=0.025, window=8, min_count=5,
                 sample=0, seed=1, workers=1, min_alpha=0.0001, dm=1, hs=1, negative=0,
                 dm_mean=0, train_words=True, train_lbls=True, **kwargs):
        """
        Initialize the model from an iterable of `sentences`. Each sentence is a
        LabeledSentence object that will be used for training.

        The `sentences` iterable can be simply a list of LabeledSentence elements, but for larger corpora,
        consider an iterable that streams the sentences directly from disk/network.

        If you don't supply `sentences`, the model is left uninitialized -- use if
        you plan to initialize it in some other way.

        `dm` defines the training algorithm. By default (`dm=1`), distributed memory is used.
        Otherwise, `dbow` is employed.

        `size` is the dimensionality of the feature vectors.

        `window` is the maximum distance between the current and predicted word within a sentence.

        `alpha` is the initial learning rate (will linearly drop to zero as training progresses).

        `seed` = for the random number generator.

        `min_count` = ignore all words with total frequency lower than this.

        `sample` = threshold for configuring which higher-frequency words are randomly downsampled;
                default is 0 (off), useful value is 1e-5.

        `workers` = use this many worker threads to train the model (=faster training with multicore machines).

        `hs` = if 1 (default), hierarchical sampling will be used for model training (else set to 0).

        `negative` = if > 0, negative sampling will be used, the int for negative
        specifies how many "noise words" should be drawn (usually between 5-20).

        `dm_mean` = if 0 (default), use the sum of the context word vectors. If 1, use the mean.
        Only applies when dm is used.

        """
        Word2Vec.__init__(self, size=size, alpha=alpha, window=window, min_count=min_count,
                          sample=sample, seed=seed, workers=workers, min_alpha=min_alpha,
                          sg=(1+dm) % 2, hs=hs, negative=negative, cbow_mean=dm_mean, **kwargs)
        self.train_words = train_words
        self.train_lbls = train_lbls
        self.labels = set()
        if sentences is not None:
            self.build_vocab(sentences)
            self.train(sentences)
            self.build_labels(sentences)

    @staticmethod
    def _vocab_from(sentences):
        sentence_no, vocab = -1, {}
        total_words = 0
        for sentence_no, sentence in enumerate(sentences):
            if sentence_no % 10000 == 0:
                logger.info("PROGRESS: at item #%i, processed %i words and %i word types" %
                            (sentence_no, total_words, len(vocab)))
            sentence_length = len(sentence.words)
            for label in sentence.labels:
                total_words += 1
                if label in vocab:
                    vocab[label].count += sentence_length
                else:
                    vocab[label] = Vocab(count=sentence_length)
            for word in sentence.words:
                total_words += 1
                if word in vocab:
                    vocab[word].count += 1
                else:
                    vocab[word] = Vocab(count=1)
        logger.info("collected %i word types from a corpus of %i words and %i items" %
                    (len(vocab), total_words, sentence_no + 1))
        return vocab

    def _prepare_sentences(self, sentences):
        for sentence in sentences:
            # avoid calling random_sample() where prob >= 1, to speed things up a little:
            sampled = [self.vocab[word] for word in sentence.words
                       if word in self.vocab and (self.vocab[word].sample_probability >= 1.0 or
                                                  self.vocab[word].sample_probability >= random.random_sample())]
            yield (sampled, [self.vocab[word] for word in sentence.labels if word in self.vocab])

    def _get_job_words(self, alpha, work, job, neu1):
        if self.sg:
            return sum(train_sentence_dbow(self, sentence, lbls, alpha, work, self.train_words, self.train_lbls) for sentence, lbls in job)
        else:
            return sum(train_sentence_dm(self, sentence, lbls, alpha, work, neu1, self.train_words, self.train_lbls) for sentence, lbls in job)

    def __str__(self):
        return "Doc2Vec(vocab=%s, size=%s, alpha=%s)" % (len(self.index2word), self.layer1_size, self.alpha)

    def save(self, *args, **kwargs):
        kwargs['ignore'] = kwargs.get('ignore', ['syn0norm'])  # don't bother storing the cached normalized vectors
        super(Doc2Vec, self).save(*args, **kwargs)

    def build_labels(self, sentences):
        self.labels |= self._labels_from(sentences)

    @staticmethod
    def _labels_from(sentences):
        labels = set()
        for sentence in sentences:
            labels |= set(sentence.labels)
        return labels

    def most_similar_labels(self, positive=[], negative=[], topn=10):
        """
        Find the top-N most similar labels.
        """
        result = self.most_similar(positive=positive, negative=negative, topn=len(self.vocab))
        result = [(k, v) for (k, v) in result if k in self.labels]
        return result[:topn]

    def most_similar_words(self, positive=[], negative=[], topn=10):
        """
        Find the top-N most similar words.
        """
        result = self.most_similar(positive=positive, negative=negative, topn=len(self.vocab))
        result = [(k, v) for (k, v) in result if k not in self.labels]
        return result[:topn]

    def most_similar_vocab(self, positive=[], negative=[], vocab=[], topn=10, cosmul=False):
        """
        Find the top-N most similar words in vocab list.
        """
        if cosmul:
            result = self.most_similar_cosmul(positive=positive, negative=negative, topn=len(self.vocab))
        else:
            result = self.most_similar(positive=positive, negative=negative, topn=len(self.vocab))
        result = [(k, v) for (k, v) in result if k in vocab]
        return result[:topn]

class LabeledBrownCorpus(object):
    """Iterate over sentences from the Brown corpus (part of NLTK data), yielding
    each sentence out as a LabeledSentence object."""
    def __init__(self, dirname):
        self.dirname = dirname

    def __iter__(self):
        for fname in os.listdir(self.dirname):
            fname = os.path.join(self.dirname, fname)
            if not os.path.isfile(fname):
                continue
            for item_no, line in enumerate(utils.smart_open(fname)):
                line = utils.to_unicode(line)
                # each file line is a single sentence in the Brown corpus
                # each token is WORD/POS_TAG
                token_tags = [t.split('/') for t in line.split() if len(t.split('/')) == 2]
                # ignore words with non-alphabetic tags like ",", "!" etc (punctuation, weird stuff)
                words = ["%s/%s" % (token.lower(), tag[:2]) for token, tag in token_tags if tag[:2].isalpha()]
                if not words:  # don't bother sending out empty sentences
                    continue
                yield LabeledSentence(words, ['%s_SENT_%s' % (fname, item_no)])


class LabeledLineSentence(object):
    """Simple format: one sentence = one line = one LabeledSentence object.

    Words are expected to be already preprocessed and separated by whitespace,
    labels are constructed automatically from the sentence line number."""
    def __init__(self, source):
        """
        `source` can be either a string (filename) or a file object.

        Example::

            sentences = LineSentence('myfile.txt')

        Or for compressed files::

            sentences = LineSentence('compressed_text.txt.bz2')
            sentences = LineSentence('compressed_text.txt.gz')

        """
        self.source = source

    def __iter__(self):
        """Iterate through the lines in the source."""
        try:
            # Assume it is a file-like object and try treating it as such
            # Things that don't have seek will trigger an exception
            self.source.seek(0)
            for item_no, line in enumerate(self.source):
                yield LabeledSentence(utils.to_unicode(line).split(), ['SENT_%s' % item_no])
        except AttributeError:
            # If it didn't work like a file, use it as a string filename
            with utils.smart_open(self.source) as fin:
                for item_no, line in enumerate(fin):
                    yield LabeledSentence(utils.to_unicode(line).split(), ['SENT_%s' % item_no])

class LabeledListSentence(object):
    """one sentence = list of words

    labels are constructed automatically from the sentence line number."""
    def __init__(self, words_list, labels):
        """
        words_list like:

            words_list = [
                ['human', 'interface', 'computer'],
                ['survey', 'user', 'computer', 'system', 'response', 'time'],
                ['eps', 'user', 'interface', 'system'],
            ]
            sentence = LabeledListSentence(words_list)

        """
        self.words_list = words_list
        self.labels = labels

    def __iter__(self):
        for i, words in enumerate(self.words_list):
            yield LabeledSentence(words, ['SENT_%s' % self.labels[i]])

■ Erstellen Sie einen Korpus aus Wikipedia-Daten.

wget http://dumps.wikimedia.org/jawiki/latest/jawiki-latest-pages-  articles.xml.bz2
#Das Herunterladen kann ca. 10 Minuten dauern
python path/to/wikicorpus.py path/to/jawiki-latest-pages-articles.xml.bz2 path/to/jawiki
#Es kann ungefähr 8 Stunden dauern

Umsetzung (Praxis)

Lesen wir die tatsächlichen Daten und versuchen wir, die Ähnlichkeit und den Vektor zu berechnen. Dieses Mal habe ich die Dokumente (Dokumente) und ihre Titel geladen, die Dokumente vektorisiert und versucht, die Ähnlichkeit und den Vektor zu berechnen.

main.py


import gensim
import mysql.connector

#Definition
previous_title = ""
docs = []
titles = []

#Stellen Sie eine Verbindung zu MySQL her
config = {
  'user': "USERNAME",
  'password': 'PASSWORD',
  'host': 'HOST',
  'database': 'DATABASE',
  'port': 'PORT'
}
connect = mysql.connector.connect(**config)
#Abfrage ausführen
cur=connect.cursor(buffered=True)

QUERY = "select d.title,d.body from docs as d order by doc.id" #Bitte hier anpassen
cur.execute(QUERY)
rows = cur.fetchall()

#Erstellen Sie Sätze und Beschriftungen, indem Sie das Ausgabeergebnis von Query mit for drehen
i = 0
for row in rows:
  if previous_title != row[0]:
  	previous_title = row[0]
  	titles.append(row[0])
  	docs.append([])
  	i+=1
  docs[i-1].append(row[1])

cur.close()
connect.close()

"""
Die oben erstellten Daten sind im Grunde solche Daten.
docs = [
    ['human', 'interface', 'computer'], #0
    ['survey', 'user', 'computer', 'system', 'response', 'time'], #1
    ['eps', 'user', 'interface', 'system'], #2
    ['system', 'human', 'system', 'eps'], #3
    ['user', 'response', 'time'], #4
    ['trees'], #5
    ['graph', 'trees'], #6
    ['graph', 'minors', 'trees'], #7
    ['graph', 'minors', 'survey'] #8
]

titles = [
	"doc1",
	"doc2",
	"doc3",
	"doc4",
	"doc5",
	"doc6",
	"doc7",
	"doc8",
	"doc9"
]
"""

labeledSentences = gensim.models.doc2vec.LabeledListSentence(docs,titles)
model = gensim.models.doc2vec.Doc2Vec(labeledSentences, min_count=0)

#Zeigen Sie ein Dokument an, das einem Dokument ähnelt
print model.most_similar_labels('SENT_doc1')

#Zeigen Sie Wörter an, die einem Dokument ähneln
print model.most_similar_words('SENT_doc1')

#Zeigen Sie ähnliche Benutzer an, nachdem Sie mehrere Dokumente hinzugefügt und entfernt haben
print model.most_similar_labels(positive=['SENT_doc1', 'SENT_doc2'], negative=['SENT_doc3'], topn=5)

#Zeigen Sie ähnliche Wörter an, nachdem Sie mehrere Dokumente hinzugefügt und entfernt haben
print model.most_similar_words(positive=['SENT_doc1', 'SENT_doc2'], negative=['SENT_doc3'], topn=5)

Recommended Posts

Berechnen Sie die Ähnlichkeit zwischen Sätzen mit Doc2Vec, einer Weiterentwicklung von Word2Vec
Berechnung der Ähnlichkeit zwischen Sätzen mit Word2Vec (vereinfachte Version)
[Für Anfänger] Quantifizieren Sie die Ähnlichkeit von Sätzen mit TF-IDF
Berechnen Sie die Gesamtzahl der Kombinationen mit Python
Berechnen Sie den Winkel zwischen n-dimensionalen Vektoren mit TensorFlow
Berechnen Sie den Regressionskoeffizienten der einfachen Regressionsanalyse mit Python
Berechnen Sie das Produkt von Matrizen mit einem Zeichenausdruck?
Berechnen Sie den Zeitunterschied zwischen zwei Spalten mit Pandas DataFrame
Berechnen Sie mit Python Millionen von Stellen in der Quadratwurzel von 2
Verschiedene Methoden zur Berechnung der Ähnlichkeit zwischen Daten mit Python
Berechnen Sie die Anzahl der Änderungen
Visualisieren Sie die Häufigkeit von Wortvorkommen in Sätzen mit Word Cloud. [Python]
Fassen wir den Grad der Kopplung zwischen Modulen mit Python-Code zusammen
Tipps: [Python] Berechnen Sie den Durchschnittswert des angegebenen Bereichs mit Bedgraph
Ich habe das Bild der Science University auf Twitter mit Word2Vec überprüft.
Berechnen Sie die Entsprechung zwischen zwei Abteilungen
Ruft die Attribute eines Objekts ab
Berechnen Sie die kürzeste Route eines Diagramms mit der Dyxtra-Methode und Python
Ich habe versucht, die Ähnlichkeit der Frageabsicht mit Doc2Vec von gensim abzuschätzen
Ich habe den Akkord des Songs mit word2vec vektorisiert und mit t-SNE visualisiert
Berechnen Sie die Wahrscheinlichkeit, eine Tintenfischmünze zu sein, mit dem Bayes-Theorem [Python]
Ruft den Rückgabewert eines externen Shell-Skripts (ls) mit python3 ab
Achten Sie beim Erstellen einer Bildmaske mit Numpy auf den Typ
Berechnen Sie mithilfe des in Python 3.3 implementierten Naive Bayes-Klassifikators die Ähnlichkeit aus der Häufigkeit des gleichzeitigen Auftretens von Wörtern in Sätzen und Zeichenfolgen.