[PYTHON] Deep Learning Specialization (Coursera) Selbststudienprotokoll (C1W3)

Einführung

Dies ist der Inhalt von Kurs 1, Woche 3 (C1W3) von Deep Learning Specialization.

(C1W3L01) Newral Network Overview

Inhalt

(C1W3L02) Neural Network Representation

Inhalt

(C1W3L03) Computing a Neural Network Output

Inhalt

z^{[1]} = W^{[1]} x + b^{[1]} \\
a^{[1]} = \sigma(z^{[1]}) \\
z^{[2]} = W^{[2]} a^{[1]} + b^{[2]} \\
a^{[2]} = \sigma(z^{[2]}) \\

(C1W3L04) Vectorizing Across Multiple Examples

Inhalt

Z^{[1]} = W^{[1]} X + b^{[1]} \\
A^{[1]} = \sigma\left(Z^{[1]}\right) \\
Z^{[2]} = W^{[2]} Z^{[1]} + b^{[2]} \\
A^{[2]} = \sigma\left(Z^{[2]}\right)
Z^{[1]} = \left[ z^{[1](1)}\,z^{[1](2)}\,\cdotsz^{[1](m)} \right] \\
A^{[1]} = \left[ a^{[1](1)}\,a^{[1](2)}\,\cdotsa^{[1](m)} \right]

Impressionen

(C1W3L05) Explanation For Vectorized Implementation

Inhalt

X = \left[x^{(1)} \, x^{(2)} \, \cdots x^{(m)}\right] \\
Z^{[1]} = \left[z^{[1](1)}\,z^{[1](2)}\,\cdotsz^{[1](m)}\right] \\
Z^{[1]} = W^{[1]} X + b^{[1]}

(C1W3L06) Activation functions

Inhalt

--tanh Funktion - a = \tanh z = \frac{e^z - e^{-z}}{e^z + e^{-z}}

--ReLU-Funktion - a = \max\(0, z\) -Obwohl das Differential nicht mit $ z = 0 $ definiert werden kann, gibt es kein Problem, da es während der Berechnung nicht genau $ z = 0 $ ist. --ReLU wird standardmäßig im neuronalen Netz verwendet (manchmal tanh) -Der Nachteil ist, dass die Steigung bei $ z \ lt 0 $ 0 wird

(C1W3L07) Why do you need non-linear activation function

Inhalt

――Warum wird eine nichtlineare Funktion für die Aktivierungsfunktion verwendet? → Wenn Sie sie zu einer linearen Funktion machen, selbst wenn Sie die verborgene Ebene vergrößern, handelt es sich schließlich nur um eine lineare Funktion, sodass sie unbrauchbar ist.

(C1W3L08) Derivatives of activation functions

Inhalt

g(z) = \frac{1}{1+e^{-z}} \\
g^\prime(z) = g(z) \left( 1-g(z) \right)
g(z) = \tanh (z) \\
g^\prime(z) = 1-\left( \tanh(z) \right)^2
g(z) = \max\left(0, z\right) \\
g^\prime(z) = 0 \ (\text{if}\  z \lt 0) \\
g^\prime(z) = 1 \ (\text{if}\  z \ge 0)
g(z) = \max\left(0.01z, z\right) \\
g^\prime(z) = 0.01 \ (\textrm{if}\  z \lt 0) \\
g^\prime(z) = 1 \ (\textrm{if}\  z \ge 0)

(C1W3L09) Gradient descent for neural network

Inhalt

Z^{[1]} = W^{[1]} X + b^{[1]} \\
A^{[1]} = g^{[1]}\left( Z^{[1]} \right) \\
Z^{[2]} = W^{[2]} A^{[1]} + b^{[2]} \\
A^{[2]} = g^{[2]}\left( Z^{[2]} \right) = \sigma \left( Z^{[2]} \right) 

-backpropagation

dZ^{[2]} = A^{[2]} - Y \ \ \left( Y = \left[ y^{(1)} \, y^{(2)} \, \cdots y^{(m)} \right] \right) \\
dW^{[2]} = \frac{1}{m} dZ^{[2]} A^{[1]\textrm{T}}\\
db^{[2]} = \frac{1}{m} \textrm{np.sum} \left( dZ^{[2]} \textrm{, axis=1, keepdims=True} \right)\\

dZ^{[1]} = W^{[2]\textrm{T}}dZ^{[2]} \ast g^{[1]\prime} \left(Z^{[1]}\right) \\
dW^{[1]} = \frac{1}{m}dZ^{[1]} X^{\text{T}} \\
db^{[1]} = \frac{1}{m} \textrm{np.sum} \left( dZ^{[1]} \textrm{, axis=1, keepdims=True} \right)\\

Impressionen

(C1W3L10) Backpropagation Intuition (optional)

Inhalt

(C1W3L11) Random Initialization

Inhalt

W^{[1]} = \textrm{np.random.randn(2, 2)} \ast 0.01 \\
b^{[1]} = \textrm{np.zero((2, 1))}

Referenz

Recommended Posts

Deep Learning Specialization (Coursera) Selbststudienprotokoll (C3W1)
Deep Learning Specialization (Coursera) Selbststudienprotokoll (C1W3)
Deep Learning Specialization (Coursera) Selbststudienprotokoll (C4W3)
Deep Learning Specialization (Coursera) Selbststudienprotokoll (C1W4)
Deep Learning Specialization (Coursera) Selbststudienprotokoll (C2W1)
Deep Learning Specialization (Coursera) Selbststudienprotokoll (C1W2)
Deep Learning Specialization (Coursera) Selbststudienprotokoll (C3W2)
Deep Learning Specialization (Coursera) Selbststudienprotokoll (C2W2)
Deep Learning Specialization (Coursera) Selbststudienprotokoll (C4W1)
Deep Learning Specialization (Coursera) Selbststudienprotokoll (C2W3)
Deep Learning Specialization (Coursera) Selbststudienprotokoll (C4W2)
Lernaufzeichnung
Lernrekord Nr. 3
Lernrekord Nr. 1
Lernrekord Nr. 2
Tiefes Lernen
Lernbericht über das Lesen von "Deep Learning von Grund auf neu"
"Deep Learning from Grund" Memo zum Selbststudium (Teil 12) Deep Learning
Selbststudien-Memo "Deep Learning from Grund" (unlesbares Glossar)
"Deep Learning from Grund" Memo zum Selbststudium (Nr. 9) MultiLayerNet-Klasse
Deep Learning Memorandum
Starten Sie Deep Learning
Python Deep Learning
Deep Learning × Python
"Deep Learning from Grund" Memo zum Selbststudium (10) MultiLayerNet-Klasse
"Deep Learning from Grund" Memo zum Selbststudium (Nr. 11) CNN
"Deep Learning from Grund" Memo zum Selbststudium (Nr. 19) Datenerweiterung
Bisherige Lernbilanz
Erstes tiefes Lernen ~ Kampf ~
Python: Deep Learning-Praxis
Deep Learning / Aktivierungsfunktionen
Deep Learning von Grund auf neu
Lernrekord 4 (8. Tag)
Lernrekord 9 (13. Tag)
Lernrekord 3 (7. Tag)
Deep Learning 1 Übung des Deep Learning
Deep Learning / Cross Entropy
Lernrekord 5 (9. Tag)
Lernrekord 6 (10. Tag)
Erstes tiefes Lernen ~ Vorbereitung ~
Programmieren des Lernprotokolls 2. Tag
Erstes tiefes Lernen ~ Lösung ~
Lernrekord 8 (12. Tag)
[AI] Deep Metric Learning
Lernrekord 1 (4. Tag)
Lernrekord 7 (11. Tag)
Ich habe versucht, tief zu lernen
Python: Deep Learning Tuning
Lernrekord 2 (6. Tag)
Deep Learning Großtechnologie
Linux-Lernprotokoll ① Planen
Lernrekord 16 (20. Tag)
Lernrekord 22 (26. Tag)
Deep Learning / Softmax-Funktion
Selbststudien-Memo "Deep Learning from Grund" (Nr. 18) Eins! Miau! Grad-CAM!
Selbststudien-Memo "Deep Learning from Grund" (Nr. 15) TensorFlow-Anfänger-Tutorial