[PYTHON] 100 Language Processing Knock-32 (utilisant des pandas): Prototype de verbe

Traitement du langage 100 coups 2015 ["Chapitre 4: Analyse morphologique"](http: //www.cl.ecei.tohoku) Il s'agit de l'enregistrement du 32ème "Prototype du verbe" de .ac.jp / nlp100 / # ch4). En continuant de la fois précédente, cette fois j'utilise des pandas, donc je peux le traiter en une phrase, et c'est tellement facile que je ne peux pas le battre. Il n'est pas nécessaire que ce soit un article indépendant ...

Lien de référence

Lien Remarques
032.Prototype de verbe.ipynb Lien GitHub du programme de réponse
100 coups de traitement du langage amateur:32 Copiez et collez la source de nombreuses pièces source
Officiel MeCab Page MeCab à regarder en premier

environnement

type version Contenu
OS Ubuntu18.04.01 LTS Il fonctionne virtuellement
pyenv 1.2.16 J'utilise pyenv car j'utilise parfois plusieurs environnements Python
Python 3.8.1 python3 sur pyenv.8.J'utilise 1
Les packages sont gérés à l'aide de venv
Mecab 0.996-5 apt-Installer avec get

Dans l'environnement ci-dessus, j'utilise les packages Python supplémentaires suivants. Installez simplement avec pip ordinaire.

type version
pandas 1.0.1

Chapitre 4: Analyse morphologique

contenu de l'étude

Appliquer l'analyseur morphologique MeCab au roman «Je suis un chat» de Natsume Soseki et obtenir les statistiques des mots du roman.

Analyse morphologique, MeCab, paroles de partie, fréquence d'occurrence, loi de Zipf, matplotlib, Gnuplot

Contenu frappé

Utilisation de MeCab pour le texte (neko.txt) du roman de Natsume Soseki "Je suis un chat" Effectuez une analyse morphologique et enregistrez le résultat dans un fichier appelé neko.txt.mecab. Utilisez ce fichier pour implémenter un programme qui répond aux questions suivantes.

Pour les problèmes 37, 38 et 39, utilisez matplotlib ou Gnuplot.

32. Forme originale du verbe

Extraire toutes les formes originales du verbe.

Répondre

Programme de réponse [032. Prototype of verb.ipynb](https://github.com/YoheiFukuhara/nlp100/blob/master/04.%E5%BD%A2%E6%85%8B%E7%B4%A0%E8 % A7% A3% E6% 9E% 90 / 032.% E5% 8B% 95% E8% A9% 9E% E3% 81% AE% E5% 8E% 9F% E5% BD% A2.ipynb)

import pandas as pd

def read_text():
    # 0:Type de surface(surface)
    # 1:Partie(pos)
    # 2:Sous-classification des paroles des parties 1(pos1)
    # 7:Forme basique(base)
    df = pd.read_table('./neko.txt.mecab', sep='\t|,', header=None, 
                       usecols=[0, 1, 2, 7], names=['surface', 'pos', 'pos1', 'base'], 
                       skiprows=4, skipfooter=1 ,engine='python')
    return df[(df['pos'] != 'Vide') & (df['surface'] != 'EOS') & (df['pos'] != 'symbole')]

df = read_text()
df[df['pos'] == 'verbe']['base']

Répondre au commentaire

La précédente «forme de surface du verbe» vient de passer à la «forme originale du verbe». Avec les pandas, réécrivez simplement les conditions.

python


df[df['pos'] == 'verbe']['base']

Résultat de sortie (résultat de l'exécution)

Lorsque le programme est exécuté, les résultats suivants sont affichés.

Résultat de sortie


13 nés
19
31 pleurer
37
39
         ... 
212527 meurent
212532 obtenir
212537 mourir
212540 obtenir
212541
Name: base, Length: 28119, dtype: object

Recommended Posts

100 Language Processing Knock-32 (utilisant des pandas): Prototype de verbe
100 traitement du langage knock-31 (en utilisant des pandas): verbe
100 traitement du langage knock-38 (en utilisant des pandas): histogramme
100 traitement du langage knock-36 (en utilisant des pandas): fréquence d'occurrence des mots
100 Language Processing Knock-33 (en utilisant des pandas): nom sahen
100 traitement du langage knock-35 (utilisant des pandas): concaténation de nomenclature
100 Language Processing Knock-39 (en utilisant des pandas): la loi de Zipf
100 traitement de langage knock-34 (utilisant des pandas): "B of A"
Traitement de 100 langues knock-98 (en utilisant des pandas): Clustering par méthode Ward
Traitement du langage 100 knocks-45: Extraction de modèles de cas verbaux
100 traitement du langage knock-75 (en utilisant scicit-learn): poids de l'identité
100 traitement du langage knock-99 (à l'aide de pandas): visualisation par t-SNE
100 traitement du langage knock-95 (en utilisant des pandas): Note avec WordSimilarity-353
100 traitement du langage knock-93 (en utilisant des pandas): calcul du taux de précision de la tâche d'analogie
100 Language Processing Knock: Chapitre 2 Principes de base des commandes UNIX (à l'aide de pandas)
100 Language Processing Knock-83 (en utilisant des pandas): Mesure de la fréquence des mots / contextes
100 Language Processing Knock-30 (en utilisant des pandas): lecture des résultats de l'analyse morphologique
100 traitement du langage knock-76 (en utilisant scicit-learn): étiquetage
100 traitement du langage knock-59: analyse de la formule S
100 traitement du langage knock-73 (en utilisant scikit-learn): apprentissage
100 traitement du langage knock-74 (en utilisant scicit-learn): prédiction
100 Language Processing Knock-84 (en utilisant des pandas): Création d'une matrice de contexte de mots
100 coups de traitement linguistique (2020): 28
100 coups de traitement linguistique (2020): 38
100 traitement de la langue frapper 00 ~ 02
100 traitement du langage knock-97 (en utilisant scicit-learn): clustering k-means
100 traitement du langage knock-91: Préparation des données d'analogie
Traitement du langage 100 knocks-44: Visualisation des arbres dépendants
Traitement du langage 100 knocks-47: Exploration de la syntaxe des verbes fonctionnels
100 Language Processing Knock-26: suppression du balisage accentué
100 Language Processing Knock-71 (en utilisant Stanford NLP): Stopword
100 traitement de la langue knock-96 (en utilisant Gensim): Extraction du vecteur lié au nom du pays
100 traitements linguistiques Knock 2020 [00 ~ 39 réponse]
100 langues de traitement knock 2020 [00-79 réponse]
100 traitement du langage knock-90 (en utilisant Gensim): apprendre avec word2vec
100 Language Processing Knock 2020 Chapitre 1
100 coups de traitement du langage amateur: 17
100 traitements linguistiques Knock 2020 [00 ~ 49 réponse]
100 Traitement du langage Knock-52: Stemming
100 langage de traitement knock-79 (en utilisant scikit-learn): dessin de graphe avec rappel de précision
100 Traitement du langage Knock Chapitre 1
100 coups de langue amateur: 07
[Pandas] Principes de base du traitement des données de date à l'aide de dt
100 Language Processing Knock 2020 Chapitre 3
100 Language Processing Knock 2020 Chapitre 2
100 coups de traitement du langage amateur: 09
100 coups en traitement du langage amateur: 47
Traitement 100 langues knock-53: Tokenisation
100 coups de traitement du langage amateur: 97
100 traitements linguistiques Knock 2020 [00 ~ 59 réponse]
100 coups de traitement du langage amateur: 67
100 traitement du langage knock-72 (en utilisant Stanford NLP): Extraction d'identité
100 langage traitement knock-92 (utilisant Gensim): application aux données d'analogie
Traitement du langage 100 knocks-46: Extraction des informations de trame de cas de verbe
Traitement du langage 100 knocks-49: Extraction de chemins de dépendances entre nomenclature
100 traitement de langage knock-94 (en utilisant Gensim): calcul de similarité avec WordSimilarity-353
100 traitements linguistiques knock-37 (utilisant des pandas): Top 10 des mots les plus fréquents
Apprenez facilement 100 traitements linguistiques Knock 2020 avec "Google Colaboratory"
100 coups de traitement du langage avec Python 2015
100 traitement du langage Knock-51: découpage de mots
100 Language Processing Knock-58: Extraction de Taple