[PYTHON] Implémenter GraphConvLayer de DeepChem dans la couche personnalisée de PyTorch

introduction

J'ai implémenté GraphConvLayer de DeepChem avec une couche personnalisée de Pytorch.

environnement

La source

La dernière fois J'ai sorti un mini-lot en utilisant l'ensemble DataSet et DataLorder créé, et j'ai essayé de le transmettre à GraphConv et de le sortir.

import torch
from torch.utils import data
from deepchem.feat.graph_features import ConvMolFeaturizer
from deepchem.feat.mol_graphs import ConvMol
import torch.nn as nn
import numpy as np


class GraphConv(nn.Module):

    def __init__(self,
               in_channel,
               out_channel,
               min_deg=0,
               max_deg=10,
               activation=lambda x: x
               ):

        super().__init__()
        self.in_channel = in_channel
        self.out_channel = out_channel
        self.min_degree = min_deg
        self.max_degree = max_deg

        num_deg = 2 * self.max_degree + (1 - self.min_degree)

        self.W_list = [
            nn.Parameter(torch.Tensor(
                np.random.normal(size=(in_channel, out_channel))).double())
            for k in range(num_deg)]

        self.b_list = [
            nn.Parameter(torch.Tensor(np.zeros(out_channel)).double()) for k in range(num_deg)]

    def forward(self, atom_features, deg_slice, deg_adj_lists):

        #print("deg_adj_list")
        print(deg_adj_lists)

        W = iter(self.W_list)
        b = iter(self.b_list)

        # Sum all neighbors using adjacency matrix
        deg_summed = self.sum_neigh(atom_features, deg_adj_lists)

        # Get collection of modified atom features
        new_rel_atoms_collection = (self.max_degree + 1 - self.min_degree) * [None]

        for deg in range(1, self.max_degree + 1):
            # Obtain relevant atoms for this degree
            rel_atoms = deg_summed[deg - 1]

            # Get self atoms
            begin = deg_slice[deg - self.min_degree, 0]
            size = deg_slice[deg - self.min_degree, 1]

            self_atoms = torch.narrow(atom_features, 0, int(begin), int(size))

            # Apply hidden affine to relevant atoms and append
            rel_out = torch.matmul(rel_atoms, next(W)) + next(b)
            self_out = torch.matmul(self_atoms, next(W)) + next(b)

            out = rel_out + self_out
            new_rel_atoms_collection[deg - self.min_degree] = out

        # Determine the min_deg=0 case
        if self.min_degree == 0:
            deg = 0

            begin = deg_slice[deg - self.min_degree, 0]
            size = deg_slice[deg - self.min_degree, 1]
            self_atoms = torch.narrow(atom_features, 0, int(begin), int(size))

            # Only use the self layer
            out = torch.matmul(self_atoms, next(W)) + next(b)

            new_rel_atoms_collection[deg - self.min_degree] = out

        # Combine all atoms back into the list
        #print(new_rel_atoms_collection)
        atom_features = torch.cat(new_rel_atoms_collection, 0)

        return atom_features


    def sum_neigh(self, atoms, deg_adj_lists):
        """Store the summed atoms by degree"""
        deg_summed = self.max_degree * [None]

        for deg in range(1, self.max_degree + 1):
            index = torch.tensor(deg_adj_lists[deg - 1], dtype=torch.int64)
            gathered_atoms = atoms[index]

            # Sum along neighbors as well as self, and store
            summed_atoms = torch.sum(gathered_atoms, 1)
            deg_summed[deg - 1] = summed_atoms

        return deg_summed


class GCNDataset(data.Dataset):

    def __init__(self, smiles_list, label_list):
        self.smiles_list = smiles_list
        self.label_list = label_list

    def __len__(self):
        return len(self.smiles_list)

    def __getitem__(self, index):
        return self.smiles_list[index], self.label_list[index]


def gcn_collate_fn(batch):
    from rdkit import Chem
    cmf = ConvMolFeaturizer()

    mols = []
    labels = []

    for sample, label in batch:
        mols.append(Chem.MolFromSmiles(sample))
        labels.append(torch.tensor(label))

    conv_mols = cmf.featurize(mols)
    multiConvMol = ConvMol.agglomerate_mols(conv_mols)

    atom_feature = torch.tensor(multiConvMol.get_atom_features(), dtype=torch.float64)
    deg_slice = torch.tensor(multiConvMol.deg_slice, dtype=torch.float64)
    membership = torch.tensor(multiConvMol.membership, dtype=torch.float64)
    deg_adj_lists = []

    for i in range(1, len(multiConvMol.get_deg_adjacency_lists())):
        deg_adj_lists.append(multiConvMol.get_deg_adjacency_lists()[i])

    return atom_feature, deg_slice, membership, deg_adj_lists,  labels


def main():
    dataset = GCNDataset(["CCC", "CCCC", "CCCCC"], [1, 0, 1])
    dataloader = data.DataLoader(dataset, batch_size=3, shuffle=False, collate_fn =gcn_collate_fn)

    model = GraphConv(75, 20)
    for atom_feature, deg_slice, membership, deg_adj_lists, labels in dataloader:
        print("atom_feature")
        print(atom_feature)
        print("deg_slice")
        print(deg_slice)
        print("membership")
        print(membership)
        print("result")
        print(model(atom_feature, deg_slice, deg_adj_lists))

if __name__ == "__main__":
    main()

résultat

Oui, non. Pour l'instant, la forme résultante semble être le nombre d'atomes x 20 dimensions (75 dimensions compressées par convolution).

atom_feature
tensor([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
         0., 1., 0.],
        [1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
         0., 1., 0.],
        [1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
         0., 1., 0.],
        [1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
         0., 1., 0.],
        [1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
         0., 1., 0.],
        [1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
         0., 1., 0.],
        [1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
         1., 0., 0.],
        [1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
         1., 0., 0.],
        [1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
         1., 0., 0.],
        [1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
         1., 0., 0.],
        [1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
         1., 0., 0.],
        [1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
         1., 0., 0.]], dtype=torch.float64)
deg_slice
tensor([[ 0.,  0.],
        [ 0.,  6.],
        [ 6.,  6.],
        [12.,  0.],
        [12.,  0.],
        [12.,  0.],
        [12.,  0.],
        [12.,  0.],
        [12.,  0.],
        [12.,  0.],
        [12.,  0.]], dtype=torch.float64)
membership
tensor([0., 0., 1., 1., 2., 2., 0., 1., 1., 2., 2., 2.], dtype=torch.float64)
result
tensor([[-0.2910,  2.2571,  1.6459, -4.0687, -3.3893,  4.3271,  1.5363,  1.2956,
         -1.1717,  0.8923, -0.9046, -3.9463,  4.2884, -3.5612, -9.7249,  1.9113,
          1.7882,  1.6279, -3.7770, -6.3691],
        [-0.2910,  2.2571,  1.6459, -4.0687, -3.3893,  4.3271,  1.5363,  1.2956,
         -1.1717,  0.8923, -0.9046, -3.9463,  4.2884, -3.5612, -9.7249,  1.9113,
          1.7882,  1.6279, -3.7770, -6.3691],
        [-0.2910,  2.2571,  1.6459, -4.0687, -3.3893,  4.3271,  1.5363,  1.2956,
         -1.1717,  0.8923, -0.9046, -3.9463,  4.2884, -3.5612, -9.7249,  1.9113,
          1.7882,  1.6279, -3.7770, -6.3691],
        [-0.2910,  2.2571,  1.6459, -4.0687, -3.3893,  4.3271,  1.5363,  1.2956,
         -1.1717,  0.8923, -0.9046, -3.9463,  4.2884, -3.5612, -9.7249,  1.9113,
          1.7882,  1.6279, -3.7770, -6.3691],
        [-0.2910,  2.2571,  1.6459, -4.0687, -3.3893,  4.3271,  1.5363,  1.2956,
         -1.1717,  0.8923, -0.9046, -3.9463,  4.2884, -3.5612, -9.7249,  1.9113,
          1.7882,  1.6279, -3.7770, -6.3691],
        [-0.2910,  2.2571,  1.6459, -4.0687, -3.3893,  4.3271,  1.5363,  1.2956,
         -1.1717,  0.8923, -0.9046, -3.9463,  4.2884, -3.5612, -9.7249,  1.9113,
          1.7882,  1.6279, -3.7770, -6.3691],
        [-1.6645,  6.3024,  0.6540, -0.7638,  5.3761, -6.3710, -0.3202,  1.3862,
          6.6121, -0.5707, -8.2441, -5.8404,  4.4354,  0.8659, -2.3474, -4.8642,
          8.3175,  0.1378, -4.6038, -3.9733],
        [-0.3320,  1.6265, -0.2117, -0.5792,  5.7710,  0.5828, -0.7252,  3.6408,
          7.6525, -0.3339, -6.1131, -2.3356,  3.6018,  1.5834, -2.7556, -4.1401,
          1.4335, -0.4723, -1.7117, -3.6721],
        [-0.3320,  1.6265, -0.2117, -0.5792,  5.7710,  0.5828, -0.7252,  3.6408,
          7.6525, -0.3339, -6.1131, -2.3356,  3.6018,  1.5834, -2.7556, -4.1401,
          1.4335, -0.4723, -1.7117, -3.6721],
        [-0.3320,  1.6265, -0.2117, -0.5792,  5.7710,  0.5828, -0.7252,  3.6408,
          7.6525, -0.3339, -6.1131, -2.3356,  3.6018,  1.5834, -2.7556, -4.1401,
          1.4335, -0.4723, -1.7117, -3.6721],
        [ 1.0006, -3.0494, -1.0774, -0.3946,  6.1658,  7.5366, -1.1302,  5.8955,
          8.6929, -0.0971, -3.9820,  1.1691,  2.7682,  2.3009, -3.1638, -3.4160,
         -5.4505, -1.0824,  1.1805, -3.3708],
        [-0.3320,  1.6265, -0.2117, -0.5792,  5.7710,  0.5828, -0.7252,  3.6408,
          7.6525, -0.3339, -6.1131, -2.3356,  3.6018,  1.5834, -2.7556, -4.1401,
          1.4335, -0.4723, -1.7117, -3.6721]], dtype=torch.float64,
       grad_fn=<CatBackward>)

Recommended Posts

Implémenter GraphConvLayer de DeepChem dans la couche personnalisée de PyTorch
Implémentez GraphGatherLayer de DeepChem avec la couche personnalisée de PyTorch
Implémenter GraphPoolLayer de DeepChem dans la couche personnalisée de PyTorch
Implémenter un décorateur de vue personnalisé avec Pyramid
Implémenter un modèle utilisateur personnalisé dans Django
Implémenter l'autorisation personnalisée pour l'authentification Firebase dans Chalice
Mettre en œuvre des recommandations en Python
Implémenter XENO avec python
Tri personnalisé en Python3
Implémenter sum en Python
Implémenter Traceroute dans Python 3