Tensorflow est désormais 2.0 et Keras a été intégré.
Article de référence Tensorflow 2.0 avec Keras
En conséquence, le code de ** Convolutional Variational Auto Encoder ** écrit en keras ne fonctionnait pas. Par conséquent, je vais collecter les dernières informations, créer un code qui fonctionne pour le moment et le télécharger.
tensorflow==2.1
VAE_202010_tf21.py
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense, Lambda, Conv2D, Flatten, Conv2DTranspose, Reshape
from tensorflow.keras import backend as K
from tensorflow.keras import losses
from tensorflow.keras.optimizers import Adam
#01. Datasets
(x_train, _), (x_test, _) = mnist.load_data()
mnist_digits = np.concatenate([x_train, x_test], axis=0)
mnist_digits = np.expand_dims(mnist_digits, -1).astype("float32") / 255
print('mnist_train',mnist_digits.shape)
print('x_train',x_train.shape)
#0-1 Normalisation
x_train = x_train / 255.0
x_test = x_test / 255.0
#2 Setting Autoencoder
epochs = 100
batch_size = 256
n_z = 2 #Nombre de variables latentes (nombre de dimensions)
#3 Fonction d'échantillonnage des variables latentes
# args = [z_mean, z_log_var]
def func_z_sample(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=K.shape(z_log_var), mean=0, stddev=1)
return z_mean + epsilon * K.exp(z_log_var/2)
# VAE Network
# Building the Enocoder
encoder_inputs = Input(shape=(28,28,1))
x = Conv2D(32,3,activation='relu',strides=2,padding='same')(encoder_inputs)
x = Conv2D(64,3,activation='relu',strides=2, padding='same')(x)
x = Flatten()(x)
x = Dense(16, activation='relu')(x)
z_mean = Dense(n_z, name='z_mean')(x)
z_log_var = Dense(n_z, name='z_log_var')(x)
z = Lambda(func_z_sample, output_shape=(n_z))([z_mean, z_log_var])
encoder = Model(encoder_inputs, [z_mean, z_log_var,z], name='encoder')
encoder.summary()
# Building the Decoder
latent_inputs = Input(shape=(n_z,))
x = Dense(7*7*64, activation='relu')(latent_inputs)
x = Reshape((7,7,64))(x)
x = Conv2DTranspose(64,3, activation='relu', strides=2, padding='same')(x)
x = Conv2DTranspose(32,3, activation='relu', strides=2, padding='same')(x)
decoder_outputs = Conv2DTranspose(1,3, activation='sigmoid', padding='same')(x)
decoder = Model(latent_inputs, decoder_outputs, name='decoder')
decoder.summary()
class VAE(Model):
def __init__(self, encoder, decoder, **kwargs):
super(VAE, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
def train_step(self,data):
if isinstance(data, tuple):
data = data[0]
with tf.GradientTape() as tape:
z_mean, z_log_var, z = encoder(data)
reconstruction = decoder(z)
reconstruction_loss = tf.reduce_mean(
losses.binary_crossentropy(data,reconstruction)
)
reconstruction_loss *= 28 * 28
kl_loss = 1 + z_log_var -tf.square(z_mean) - tf.exp(z_log_var)
kl_loss = tf.reduce_mean(kl_loss)
kl_loss *= -0.5
total_loss = reconstruction_loss + kl_loss
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
return{
"loss": total_loss,
"reconstruction loss": reconstruction_loss,
"kl_loss": kl_loss,
}
vae = VAE(encoder, decoder)
vae.compile(optimizer=Adam())
vae.fit(mnist_digits, epochs=epochs, batch_size=batch_size)
#Display how the latent space clusters different digit classes
def plot_label_clusters(encoder, decoder, data, labels):
# display a 2D plot of the digit classes in the latent space
z_mean, _, _ = encoder.predict(data)
plt.figure(figsize=(12, 10))
plt.scatter(z_mean[:, 0], z_mean[:, 1], c=labels)
plt.colorbar()
plt.xlabel("z[0]")
plt.ylabel("z[1]")
plt.show()
(x_train, y_train), _ = mnist.load_data()
x_train = np.expand_dims(x_train, -1).astype("float32") / 255
plot_label_clusters(encoder, decoder, x_train, y_train)
Distribution de 0-9 dans un espace latent bidimensionnel
Recommended Posts