La couleur dominante est la teinte qui domine la palette de couleurs globale. --Google
Extraire 5 couleurs et dessiner un graphique circulaire proportionnellement.
$ pip install opencv-python
$ pip install scikit-learn
$ pip install matplotlib
Créez une liste RVB pour rendre les données d'image qui peuvent être regroupées en k-means
import cv2
import itertools
image = cv2.imread('./input.jpg')
rgbs = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
rgb_list = list(itertools.chain(*rgbs.tolist()))
k-means Nombre de couleurs à extraire = Nombre de clusters Voici 5 exemples:
from sklearn.cluster import KMeans
clusters = KMeans(n_clusters=5).fit(rgb_list)
Le centre du cluster est la couleur dominante
colors = clusters.cluster_centers_
print(colors)
[[ 25.29093216 119.84721127 142.13737995]
[223.23362209 201.96734673 193.59849205]
[176.3426999 108.01350558 118.93074255]
[ 8.36396613 14.71480369 27.54413049]
[ 98.95068783 32.240443 48.93265647]]
#rgb
Calculez le pourcentage de chaque cluster
import numpy as np
def cluster_percents(labels):
total = len(labels)
percents = []
for i in set(labels):
percent = (np.count_nonzero(labels == i) / total) * 100
percents.append(round(percent, 2))
return percents
percents = cluster_percents(clusters.labels_)
print(percents)
[9.16, 9.6, 11.51, 48.37, 21.35]
#%
Echelle car la couleur de matplotlib n'accepte que les RVB mis à l'échelle de 0 à 1.
import matplotlib.pyplot as plt
colors = clusters.cluster_centers_ / 255
colors = colors.tolist()
Triez les proportions de grande à petite pour rendre le graphique circulaire beau.
percents = cluster_percents(clusters.labels_)
tup = zip(colors, percents)
sorted_tup = sorted(tup, key=lambda n: n[1], reverse=True)
sorted_colors = [c for c,p in sorted_tup]
sorted_percents = [p for c,p in sorted_tup]
Dessinez un graphique circulaire
plt.pie(sorted_percents, colors=sorted_colors, counterclock=False, startangle=90)
plt.show()
Recommended Posts