Distiller est une bibliothèque basée sur PyTorch créée par Intel avec des algorithmes pour réduire le poids des modèles Deep Learning. Les principaux exemples de réduction de poids du modèle sont la quantification, l'élagage, la distillation, etc., et Distiller est facile à utiliser. De plus, le tutoriel comprenait même une fonction qui vous permet de vérifier l'état de l'apprentissage en solidarité avec TensorBoard (merci).
Cliquez ici pour un site détaillé sur la réduction du poids des modèles https://laboro.ai/column/%E3%83%87%E3%82%A3%E3%83%BC%E3%83%97%E3%83%A9%E3%83%BC%E3%83%8B%E3%83%B3%E3%82%B0%E3%82%92%E8%BB%BD%E9%87%8F%E5%8C%96%E3%81%99%E3%82%8B%E3%83%A2%E3%83%87%E3%83%AB%E5%9C%A7%E7%B8%AE/
$ git clone https://github.com/NervanaSystems/distiller.git
$ cd distiller
$ pip install -r requirements.txt
$ pip install -e .
$ python
>>> import distiller
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/mnt/PytorchIntro/distiller/distiller/__init__.py", line 20, in <module>
from .config import file_config, dict_config, config_component_from_file_by_class
...
File "/root/local/python-3.7.1/lib/python3.7/site-packages/git/exc.py", line 9, in <module>
from git.compat import UnicodeMixin, safe_decode, string_types
File "/root/local/python-3.7.1/lib/python3.7/site-packages/git/compat.py", line 16, in <module>
from gitdb.utils.compat import (
ModuleNotFoundError: No module named 'gitdb.utils.compat'
Dans mon cas, lorsque j'ai essayé d'importer le Distiller ajouté à la bibliothèque, j'ai eu une erreur liée à la bibliothèque git, alors j'ai rétrogradé le mauvais gitdb2 et cela a été corrigé. (Ma version installée est 4.0.2)
$ pip uninstall gitdb2
$ pip install gitdb2==2.0.6
Confirmation
$ cd distiller/examples/classifier_compression/
$ python3 compress_classifier.py --arch simplenet_cifar ../../../data.cifar10 -p 30 -j=1 --lr=0.01
--------------------------------------------------------
Logging to TensorBoard - remember to execute the server:
> tensorboard --logdir='./logs'
=> created a simplenet_cifar model with the cifar10 dataset
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ../../../data.cifar10/cifar-10-python.tar.gz
99%|█████████████████████████████████████████████████████████████████████████████▌| 169582592/170498071 [00:18<00:00, 11451969.71it/s]Extracting ../../../data.cifar10/cifar-10-python.tar.gz to ../../../data.cifar10
Files already downloaded and verified
Dataset sizes:
training=45000
validation=5000
test=10000
Training epoch: 45000 samples (256 per mini-batch)
170500096it [00:30, 11451969.71it/s] Epoch: [0][ 30/ 176] Overall Loss 2.303411 Objective Loss 2.303411 Top1 10.299479 Top5 50.104167 LR 0.010000 Time 0.038285
Epoch: [0][ 60/ 176] Overall Loss 2.301507 Objective Loss 2.301507 Top1 10.774740 Top5 51.328125 LR 0.010000 Time 0.037495
Epoch: [0][ 90/ 176] Overall Loss 2.299031 Objective Loss 2.299031 Top1 12.335069 Top5 54.973958 LR 0.010000 Time 0.037465
Epoch: [0][ 120/ 176] Overall Loss 2.293749 Objective Loss 2.293749 Top1 13.424479 Top5 57.542318 LR 0.010000 Time 0.037429
Epoch: [0][ 150/ 176] Overall Loss 2.278429 Objective Loss 2.278429 Top1 14.692708 Top5 59.864583 LR 0.010000 Time 0.037407
Parameters:
+----+---------------------+---------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
| | Name | Shape | NNZ (dense) | NNZ (sparse) | Cols (%) | Rows (%) | Ch (%) | 2D (%) | 3D (%) | Fine (%) | Std | Mean | Abs-Mean |
|----+---------------------+---------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------|
| 0 | module.conv1.weight | (6, 3, 5, 5) | 450 | 450 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.07800 | -0.01404 | 0.06724 |
| 1 | module.conv2.weight | (16, 6, 5, 5) | 2400 | 2400 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.04952 | 0.00678 | 0.04246 |
| 2 | module.fc1.weight | (120, 400) | 48000 | 48000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.02906 | 0.00082 | 0.02511 |
| 3 | module.fc2.weight | (84, 120) | 10080 | 10080 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.05328 | 0.00084 | 0.04607 |
| 4 | module.fc3.weight | (10, 84) | 840 | 840 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.06967 | -0.00275 | 0.06040 |
| 5 | Total sparsity: | - | 61770 | 61770 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
+----+---------------------+---------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
Total sparsity: 0.00
--- validate (epoch=0)-----------
5000 samples (256 per mini-batch)
==> Top1: 25.240 Top5: 75.520 Loss: 2.060
==> Best [Top1: 25.240 Top5: 75.520 Sparsity:0.00 NNZ-Params: 61770 on epoch: 0]
Saving checkpoint to: logs/2020.05.02-235616/checkpoint.pth.tar
...
Pour le moment, je suis soulagé car il a bougé ε- (´∀ ` *) Hot Je l'ajouterai dès que je trouverai quelque chose.
https://github.com/NervanaSystems/distiller
Recommended Posts