Let's find the Fibonacci number with the Fork / Join Framework.
The Fibonacci number (Fibonacci number) is named after the Italian mathematician Leonardo Fibonacci (Pisa's Leonardo).
If the $ n $ th Fibonacci number is represented by $ F_n $, $ F_n $ is recursive.
$ F_0 = 0 $ $ F_1 = 1 $ $ F_{n+2} = F_n + F_{n+1}\quad(n\geqq1) $
It is defined by.
FibonacciTask.java
import java.util.concurrent.RecursiveTask;
public class FibonacciTask extends RecursiveTask<Integer> {
private final int n;
FibonacciTask(int n) {
this.n = n;
}
@Override
protected Integer compute() {
if (n <= 1) {
//If n is 0 or 1, return as is
return n;
}
// n-Find the Fibonacci number for 1
FibonacciTask f1 = new FibonacciTask(n - 1);
f1.fork();
// n-Find the Fibonacci number for 2
FibonacciTask f2 = new FibonacciTask(n - 2);
//Add the processing results to get the Fibonacci number of n
return f2.compute() + f1.join();
}
}
Main.java
import java.util.concurrent.ForkJoinPool;
public class Main {
public static void main(String[] args) {
ForkJoinPool pool = new ForkJoinPool();
for (int n = 0; n < 40; n++) {
int result = pool.invoke(new FibonacciTask(n));
System.out.println("F[" + n + "]:" + result);
}
}
}
I will do it.
$ java Main
F[0]:0
F[1]:1
F[2]:1
F[3]:2
F[4]:3
F[5]:5
F[6]:8
F[7]:13
F[8]:21
F[9]:34
F[10]:55
F[11]:89
F[12]:144
F[13]:233
F[14]:377
F[15]:610
F[16]:987
F[17]:1597
F[18]:2584
F[19]:4181
F[20]:6765
F[21]:10946
F[22]:17711
F[23]:28657
F[24]:46368
F[25]:75025
F[26]:121393
F[27]:196418
F[28]:317811
F[29]:514229
F[30]:832040
F[31]:1346269
F[32]:2178309
F[33]:3524578
F[34]:5702887
F[35]:9227465
F[36]:14930352
F[37]:24157817
F[38]:39088169
F[39]:63245986
It's slow, so make a note of it.
FibonacciTask.java
import java.util.concurrent.RecursiveTask;
import java.util.Map;
import java.util.HashMap;
public class FibonacciTask extends RecursiveTask<Integer> {
private final int n;
private static Map<Integer, Integer> sequence = new HashMap<>();
static {
sequence.put(0, 0);
sequence.put(1, 1);
}
FibonacciTask(int n) {
this.n = n;
}
@Override
protected Integer compute() {
return sequence.computeIfAbsent(this.n, x -> fibonacci(this.n));
}
private static Integer fibonacci(int n) {
// n-Find the Fibonacci number for 1
FibonacciTask f1 = new FibonacciTask(n - 1);
f1.fork();
// n-Find the Fibonacci number for 2
FibonacciTask f2 = new FibonacciTask(n - 2);
//Add the processing results to get the Fibonacci number of n
return f2.compute() + f1.join();
}
}
Recommended Posts