Read "Basics of Quantum Annealing" Hidetoshi Nishimori, Masayuki Ozeki, Kyoritsu Shuppan, 2018 https://qiita.com/kaizen_nagoya/items/29580dc526e142cb64e9
"Basics of Quantum Annie Ring" Errata (written by Hidetoshi Nishimori and Masayuki Ozeki) Updated on June 20, 2019 https://www.kyoritsu-pub.co.jp/app/file/goods_contents/3037.pdf
Quantum Annealing Mathematics Hidetoshi Nishimori, Department of Condensed Matter Physics, Graduate School of Science and Engineering, Tokyo Institute of Technology https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/189516/1/bussei_el_033203.pdf
The book is 1 Quantum mechanics 2 Thermodynamics, statistical mechanics Polite for those who know
Here, the materials are organized on the assumption that neither is known.
Day 1 of reading "Basics of Quantum Annealing" https://qiita.com/kaizen_nagoya/items/2bc284faaf0f61278778
Day 2 of reading "Basics of Quantum Annealing" https://qiita.com/kaizen_nagoya/items/749043f4f8ae026ec5e5
Read "Basics of Quantum Annealing" Day 3 https://qiita.com/kaizen_nagoya/items/3f3d67d841075e8c867a
Read "Basics of Quantum Annealing" Day 4 https://qiita.com/kaizen_nagoya/items/a75e954194de820637a3
Quantum Computer: Three Ways to Get to Quantum Mechanics https://qiita.com/kaizen_nagoya/items/cfc35e62c81a978cc2fc
Seven Ways for Programmers to Study Quantum Mechanics https://qiita.com/kaizen_nagoya/items/7061f62b3629eee395f2
Spinglass theory and information statistical dynamics Hidetoshi Nishimori References https://qiita.com/kaizen_nagoya/items/702c08becfcca98fa9d8 p.183
Simulated annealing (simulated annealing) is a method of numerically realizing this process on a computer to approximately obtain the solution of the optimized space. If you slowly lower T over an infinite amount of time, you will actually reach optimization, but in reality, you will lower the temperature at a moderate speed and stop at an appropriate point. In this sense, it is an approximate solution method.
Recent Developments of Quantum Monte Carlo Method Kenji Harada, Graduate School of Informatics, Kyoto University https://www-np.acs.i.kyoto-u.ac.jp/~harada/misc/qmc.pdf
Markov chain basics and Kolmogorov equation https://mathtrain.jp/markovchain
Basics of Stochastic Process-Markov Chain-2016/4/25 Startup Seminar Department of Civil Engineering Transportation Research B4 Midori Maeda The University of Tokyo http://bin.t.u-tokyo.ac.jp/startup16/file/2-2.pdf
Entropy and Gibbs Canonical Ensemble https://ist.ksc.kwansei.ac.jp/~nishitani/Lectures/2005/NewMaterialDesign/Statistics.pdf
Statistical Thermodynamics Lecture 9th Contact: Nobuhiro Nishino Room A3-012 Hiroshima University https://home.hiroshima-u.ac.jp/nishino/2010/toukei/toukei_9.pdf
Front of Monte Carlo method — How to roll and integrate — Koji Fukushima, University of Tokyo https://www.smapip.is.tohoku.ac.jp/~smapip/2003/tutorial/presentation/koji-hukushima.pdf
Bayesian Statistics Theory and Method 5.1 Markov Chain Monte Carlo Method Koya Ohashi, Department of Mathematical and Computational Science, Faculty of Information Science and Technology, Tokyo Institute of Technology http://watanabe-www.math.dis.titech.ac.jp/~kohashi/document/bayes_51.pdf
Special Lecture on Physics Yukito Iba Institute of Statistical Mathematics, Research Organization of Information and Systems (Tokyo Institute of Technology) https://www.ism.ac.jp/~iba/kougi_2006_ism/c20061.pdf
simulated annealing
Simulated Annealing method for combinatorial optimization problems http://www.orsj.or.jp/~archive/pdf/bul/Vol.31_01_043.pdf
Intellectual System Design Laboratory SA Program Creation and Parameter Review Kengo Yoshii Doshisha University http://mikilab.doshisha.ac.jp/dia/monthly/monthly04/20040524/yoshii.pdf
Neighborhood Parallel Simulated Annealing in Continuous Optimization Problems Doshisha University Faculty of Engineering Department of Knowledge Engineering Graduation thesis March 2003 Student ID number 990064 Intellectual System Design Laboratory Masataka Oikawa http://isw3.naist.jp/IS/Bio-Info-Unit/gogroup/masata-o/PDF/graduation_thesis.pdf
Spectral Gap for Markov Chain and its Application to Simulated Annealing Chiyonobu Laboratory Daiki Hatta https://sci-tech.ksc.kwansei.ac.jp/~chiyonobu/gseminar/hatta.pdf
Basics of Adaptive Simulated Annealing Hiroki Hirao, Doshisha University http://mikilab.doshisha.ac.jp/dia/monthly/monthly07/20070523/hirao.pdf
p.85 Probability of temperature exchange in marginal likelihood calculation Sumio Watanabe Tokyo Institute of Technology http://watanabe-www.math.dis.titech.ac.jp/users/swatanab/exchange_free_energy.pdf
Calculate WBIC from a sample of posterior distribution with inverse temperature 1 http://statmodeling.hatenablog.com/entry/WBIC-approximation
I tried using PFN's Optuna in the inverse temperature parameter optimization of D-Wave's quantum Boltzmann machine. https://qiita.com/YuichiroMinato/items/25232450d2c22d1c2fe9
Estimating the minimum number of samples required for Bayesian learning Estimating a minimum required sample size for Bayesian learning Satoru Tokuda Kenji Nagata Masato Okada https://www.ai-gakkai.or.jp/jsai2015/webprogram/2015/pdf/2F1-5in.pdf
Introduction to Path Integral-Path Integral in Imaginary-Time as Well- (Introduction to Path Integral-Path Integral in Imaginary-Time as Well-) Takashi Ichinose http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1723-01.pdf
Chapter 17 Path Integral Method The University of Tokyo https://ocw.kyoto-u.ac.jp/ja/graduate-school-of-science-jp/course-chemical-statics/pdf/lect13.pdf
Quantum mechanics by path integral and geometric topology in condensed matter physics (Comprehensive subject "Physics and Mathematics 3") Yasuhiro Hatsugai, Graduate School of Engineering, The University of Tokyo 1 http://rhodia.ph.tsukuba.ac.jp/~hatsugai/modules/pico/PDF/lectures/Hatsugai-Geom.pdf
Path integral display part 1: 1 In the case of particles Yuki Nagai The University of Tokyo http://park.itc.u-tokyo.ac.jp/kato-yusuke-lab/nagai/note_071025_path.pdf
sinh https://www.geisya.or.jp/~mwm48961/electro/hyperbolic_fun1.htm
An important official summary of hyperbolic functions https://mathtrain.jp/hyperbolic
Introduction to the world of hyperbolic functions Shinji Akimatsu http://haikara-city.com/wp-content/uploads/2017/09/hyp_world2.pdf
p.89 Let's take a peek into the non-commutative world University of Tsukuba Mathematics Mitsuo Hoshino https://nc.math.tsukuba.ac.jp/?action=cabinet_action_main_download&block_id=282&room_id=80&cabinet_id=1&file_id=9&upload_id=225
The world of quantum space — Let's solve non-commutative equations — Mori Ide Shizuoka University Faculty of Science Department of Mathematics November 26, 2015 (Thursday) https://www.sci.shizuoka.ac.jp/sciencecafe/news/20151126_02.pdf
Statistical Machine Learning Theory and Boltzmann Machine Learning Muneki Yasuda, Graduate School of Science and Engineering, Yamagata University https://www.r-ccs.riken.jp/labs/cms/workshop/20170322/presentation/yasuda.pdf
A collection of techniques for Boltzmann machine learning with D-Wave https://qiita.com/piyo7/items/c8f21b86f1b17dc42df3
Use the machine learning function "Boltzmann machine" to tackle the difficult problem of quantum many-body system https://academist-cf.com/journal/?p=10216
Variational algorithms and machine learning using quantum computers https://www.jps.or.jp/books/gakkaishi/2019/09/74-09seriesAIphys1.pdf
A new era of machine learning and computing technology pioneered by quantum annealing Department of Applied Information Science, Graduate School of Information Science, Tohoku University * Masayuki Ozeki http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/2059-02.pdf
Convergent gradient method in quantum large-scale eigenvalue problems https://www.jstage.jst.go.jp/article/jsces/2006/0/2006_0_20060027/_pdf
Contrastive divergence(CD)
Contrastive divergence law and its surroundings Contrastive Divergence and Related Topics Shinichi Maeda Graduate School of Informatics, Kyoto University https://jsai.ixsq.nii.ac.jp/ej/index.php?action=pages_view_main&active_action=repository_action_common_download&item_id=1664&item_no=1&attribute_id=22&file_no=1&page_id=13&block_id=23
Equilibrium point analysis of Contrastive Divergence learning in continuous value RBM New area of the University of Tokyo A RIKEN BSIB Ryo Karakida A, Masato Okada A, B, Shunichi Amari B https://www.jstage.jst.go.jp/article/jpsgaiyo/70.1/0/70.1_2992/_pdf
Contrastive Divergence Law A blog that may end suddenly http://mkprob.hatenablog.com/entry/2014/07/20/034311
persistent contrastive divergence(PCD)
Kullback-Leibler Commentary on the amount of information Gen Kuroki Tohoku University http://www.math.tohoku.ac.jp/~kuroki/LaTeX/20160616KullbackLeibler/20160616KullbackLeibler-0.2.1.pdf
KL divergence between normal distributions https://qiita.com/ceptree/items/9a473b5163d5655420e8
Understand Kullback-Leibler spoken in generative models https://qiita.com/TomokIshii/items/b9a11c19bd5c36ad0287
QBoost(D-WAVE)
Dictionary learning algorithm Shosuke Kabashima (Tokyo Institute of Technology), Ayaka Sakata (The Institute of Statistical Mathematics) https://www.ieice.org/ess/sita/forum/article/2015/201512081915.pdf
Pattern discovery from big data by dictionary learning University of Tsukuba Taro Tezuka https://www.jstage.jst.go.jp/article/cicsj/32/4/32_76/_pdf
Dictionary learning algorithm https://qiita.com/kibo35/items/67dedba4ea464cc494b0
Proximal Gradient Method Application Part 1-Super-resolution from sparse coding and dictionary learning- http://yamagensakam.hatenablog.com/entry/2018/04/12/074955
Chapter 10 How to Find the Estimator Osaka University http://www2.econ.osaka-u.ac.jp/~tanizaki/class/2018/basic_econome/04.pdf
Maximum likelihood estimation of log-likelihood function https://stats.biopapyrus.jp/glm/mle.html
Meaning and specific examples of parameter estimation by maximum likelihood method https://mathtrain.jp/mle
Chimera graph https://qard.is.tohoku.ac.jp/T-Wave/?glossary=キメラグラフ
Graph mapping https://quantum.fixstars.com/introduction_to_quantum_computer/quantum_annealing/programming/graph_mapping/
Quantum artificial brain ~ Coherent Ising Machine for Solving Combination Optimization Problems Kiyoshi Utsunomiya, National Institute of Informatics https://www.jst.go.jp/impact/hp_yamamoto/symposium/pdf/project2_material_3.pdf
About Fujitsu's HPC Initiatives FUJITSU'S LATEST ACTIVITIES IN HPC DEVELOPMENT Yutaka Miyahara http://www.ee.utsunomiya-u.ac.jp/~kawatalab/pse/workshop/j2018/papers/02_0930.pdf
p.107
https://www.keyence.co.jp/ss/products/recorder/heat/basics/type.jsp
What is a quantum quench? https://www.quora.com/What-is-a-quantum-quench
Condensed Matter Physics Special Lecture What is an artificial atom quantum dot? University of Tsukuba Physics Yasuaki Masumoto https://www.px.tsukuba.ac.jp/~ikezawa/lab/chibadai.pdf
Topological quantum strategy ~ Device innovation brought about by new developments in quantum mechanics ~ https://www.jst.go.jp/crds/pdf/2016/SP/CRDS-FY2016-SP-02.pdf
§4 Basics of statistical mechanics
http://phys.sci.hokudai.ac.jp/~kita/StatisticalMechanicsI/Stat4.pdf
Partition function and thermodynamic function of canonical distribution https://nagoya.repo.nii.ac.jp/index.php?action=pages_view_main&active_action=repository_action_common_download&item_id=14201&item_no=1&attribute_id=17&file_no=10&page_id=28&block_id=27
Quantum statistical mechanics Sophia University Faculty of Science and Engineering Tomi Otsuki http://www.ph.sophia.ac.jp/~tomi/kougi_note/stat_phys.pdf
Proof of partition function and trace relationship Z = Tr (exp (-βH)) = Σexp (-βEk) https://batapara.com/archives/19115592.html/
Principle of statistical mechanics http://rhodia.ph.tsukuba.ac.jp/~hatsugai/modules/pico/PDF/lectures/stat.pdf
Partition function, density matrix, classical correspondence http://www7b.biglobe.ne.jp/~fortran/education/partitionfn.pdf
Limited Boltzmann machine https://quantum.fixstars.com/introduction_to_quantum_computer/quantum_computer_research/restricted_boltzmann_machine/
Limited Boltzmann Machine Beginner's Guide POSTD https://postd.cc/a-beginners-guide-to-restricted-boltzmann-machines/
Derivation of restricted Boltzmann machine (RBM) (1) http://aidiary.hatenablog.com/entry/20160316/1458129923
[With simple explanation] Scratch implementation of deep Boltzmann machine with Python ① https://qiita.com/yutaitatsu/items/a9478841357b10789514
High-performance mean-field approximation algorithm for deep Boltzmann machines Chako Takahashi Muneki Yasuda Yamagata University https://ipsj.ixsq.nii.ac.jp/ej/index.php?action=pages_view_main&active_action=repository_action_common_download&item_id=180684&item_no=1&attribute_id=1&file_no=1&page_id=13&block_id=8
Statistical Machine Learning Theory and Boltzmann Machine Learning https://www.r-ccs.riken.jp/labs/cms/workshop/20170322/presentation/yasuda.pdf
Machine Learning-Machine Learning-Helmholtz Machine Implementation [Completed] https://codeday.me/jp/qa/20190707/1196714.html
Generative Model Deep Learning PFI Seminar Seiya Tokui https://www.slideshare.net/beam2d/learning-generator
Examination of AdaBoost using SVM as a weak classifier Kobe University Hiroyoshi Matsuda Tetsuya Takiguchi Yasuo Ariki https://pdfs.semanticscholar.org/bf51/de439089be83481f7382f3e2c16a8f00ac80.pdf
I tried various weak learners of AdaBoost https://qiita.com/antimon2/items/8761cea58f498e4ff74b
Special Lecture on Pattern Recognition ~ Boosting from the Viewpoint of Researchers ~ 2011.10.04 Takatsugu Makita @ National Institute of Advanced Industrial Science and Technology http://www.kameda-lab.org/lecture/2011-tsukubagrad-PRML/20111004_AIST_Makita.pdf
Nonnegative / binary matrix factorization with a D-Wave quantum annealer by Daniel O'Malley, et al. (2017) https://qard.is.tohoku.ac.jp/T-Wave/?p=397
Nonnegative matrix factorization Kameoka Hirokazu http://www.kecl.ntt.co.jp/people/kameoka.hirokazu/publications/Kameoka2012SICE09published.pdf
With complex matrix factorization under non-negative constraints Its application to social media analysis Takashi Takeuchi 1, a) Katsuhiko Ishiguro 1, b) Shogo Kimura 1, c) Hiroshi Sawada 2, d) https://ipsj.ixsq.nii.ac.jp/ej/index.php?action=pages_view_main&active_action=repository_action_common_download&item_id=99709&item_no=1&attribute_id=1&file_no=1&page_id=13&block_id=8
Statistical power of intellectual information processing-Let's start machine learning-Masayuki Ozeki Department of Systems Science, Graduate School of Informatics, Kyoto University http://www-adsys.sys.i.kyoto-u.ac.jp/mohzeki/summer2016.pdf
Experience AIC, WAIC, WBIC http://rstudio-pubs-static.s3.amazonaws.com/451984_464393c3da5d4f7aa94b7ca4d6cfcf3a.html
p.101 Experience distribution
Ensemble learning Osamu Ueda † https://ipsj.ixsq.nii.ac.jp/ej/index.php?action=pages_view_main&active_action=repository_action_common_download&item_id=18021&item_no=1&attribute_id=1&file_no=1&page_id=13&block_id=8
[Introduction] Two typical methods and algorithms for ensemble learning https://spjai.com/ensemble-learning/
Are all advanced machine learning users using it? !! I will explain the mechanism of ensemble learning and the three types https://www.codexa.net/what-is-ensemble-learning/
Ensemble learning-The wisdom of Manjushri if three people come together-Let's make a lot of models and improve the estimation performance! https://datachemeng.com/ensemblelearning/
Ensemble learning framework https://jp.mathworks.com/help/stats/framework-for-ensemble-learning.html
Avoid overfitting: dropout
Strategic Creative Research Promotion Project CREST Research area "Creation of new technology aiming at realization of quantum information processing system" Research subject "Elucidation and control of quantum many-body cooperation phenomenon" Research completion report Research period October 2005-March 2011 Principal Investigator: Seiji Miyashita (Professor, Graduate School of Science, The University of Tokyo) https://www.jst.go.jp/kisoken/crest/report/sh_heisei17/ryoushi/04miyashita.pdf
Combination optimization problem and quantum annealing: theory and performance evaluation of quantum adiabatic development Tadashi Suzuki, Kyoto University https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/142655/1/KJ00004982313.pdf
Quantum annealing method https://quantum.fixstars.com/introduction_to_quantum_computer/quantum_annealing/
Combinatorial optimization by quantum annealing Masayuki Ozeki http://www.orsj.or.jp/archive2/or63-6/or63_6_326.pdf
This article describes the weaknesses of D-Wave devices.
Outline and basics of quantum computation given to Freshman-Focusing on the concept of quantum computation and the image of quantum gates- Shigeo Kotake http://www.eng.mie-u.ac.jp/research/activities/30/30_13.pdf
Quantum mystery "Don't listen beyond" https://www.tel.co.jp/museum/magazine/017/lab01/02.html
Deep Learning Technology and Signal Processing / Communication Algorithms-Overview and Prospects- Nagoya Institute of Technology Tadashi Wadayama https://www.ieice.org/ess/sita/forum/article/2018/201807311720.pdf
Statistical mean Is the term Reintroduction to Stanford Physics Quantum Mechanics https://www.amazon.co.jp/dp/B01B2K28Z6 Art Friedman Leonard Susskind Nikkei BP (2016/01/28) On p.22
Document organization https://researchmap.jp/joyxqexdv-49935/#_49935
https://jp.quora.com/ryoushirikigaku-ga-fun-ka-tsu-ta-to-omoi-tsu-ta-hon-enshuu-kaki-nado-ga-arima-shitara-o-oshie-kuda-sai-ma-sen-ka
[Continuous lecture] Introduction to quantum mechanics (10 lectures in total) Youbute video https://researchmap.jp/joz7zs9b6-49935/#_49935
Easy Quantum Mechanics (1965) (New Book on Popular Science) Ve y Ludnik Tokyo Book (1965) https://researchmap.jp/jo4lwf59f-49935/#_49935
Quantum Computer on Github https://github.com/kaizen-nagoya/way_to_quantum_computer
docker for windows 7 https://qiita.com/kaizen_nagoya/items/490e5a250efabc9dc557
Introduction to "Introduction to maxima" (Windows edition) https://qiita.com/kaizen_nagoya/items/77cfe874c73d8eae92fc
Koji Husimi, Probability Theory and Statistics Theory https://researchmap.jp/josgkrcbv-2087795/#_2087795
macOS
$ brew cask install anaconda
$ pip install matplotlib
$ pip install cmake
$ pip install openjij
$ python openjijch1.py
h_i: {0: -1, 1: -1, 2: -1, 3: -1, 4: -1}
Jij: {(0, 1): -1, (0, 2): -1, (0, 3): -1, (0, 4): -1, (1, 2): -1, (1, 3): -1, (1, 4): -1, (2, 3): -1, (2, 4): -1, (3, 4): -1}
[[1, 1, 1, 1, 1]]
[{0: 1, 1: 1, 2: 1, 3: 1, 4: 1}]
[[1, -1, 1], [1, -1, 1], [1, -1, 1], [1, -1, 1], [1, -1, 1], [1, -1, 1], [1, -1, 1], [1, -1, 1], [1, -1, 1], [1, -1, 1]]
[-4.0, -4.0, -4.0, -4.0, -4.0, -4.0, -4.0, -4.0, -4.0, -4.0]
['a', 'c', 'b']
[{'a': 1, 'c': -1, 'b': 1}, {'a': 1, 'c': -1, 'b': 1}, {'a': 1, 'c': -1, 'b': 1}, {'a': 1, 'c': -1, 'b': 1}, {'a': 1, 'c': -1, 'b': 1}, {'a': 1, 'c': -1, 'b': 1}, {'a': 1, 'c': -1, 'b': 1}, {'a': 1, 'c': -1, 'b': 1}, {'a': 1, 'c': -1, 'b': 1}, {'a': 1, 'c': -1, 'b': 1}]
{'states': array([[ 1, -1, 1]]), 'num_occurrences': array([10]), 'min_energy': -4.0}
[[1, 1, 0], [1, 1, 0], [1, 1, 0]]
[-46.04283667268458, -45.40319673739635, -45.43927510769896, -45.8420452385678, -44.69211986420642]
{'states': array([[1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1,
1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0,
1, 1, 1, 0, 0, 0]]), 'num_occurrences': array([28]), 'min_energy': -46.04283667268458}
Run
openjijch1.py
import openjij as oj
#https://openjij.github.io/OpenJijTutorial/_build/html/ja/index.html
import random
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
mpl.use('Agg')
#Create an interaction with the longitudinal magnetic field that represents the problem. OpenJij accepts problems in a dictionary type.
N = 5
h = {i: -1 for i in range(N)}
J = {(i, j): -1 for i in range(N) for j in range(i+1, N)}
print('h_i: ', h)
print('Jij: ', J)
#First, create an instance of Sampler that solves the problem. You can select the algorithm that solves the problem by selecting this instance.
sampler = oj.SASampler()
#Problem with sampler method(h, J)Throw to solve the problem.
response = sampler.sample_ising(h, J)
#Calculation result(Status)Is result.It is in states.
print(response.states)
#Or look at samples to see it with a subscript.
print(response.samples)
#Actually h,The dictionary key, which indicates the J subscript, can handle non-numeric values.
h = {'a': -1, 'b': -1}
J = {('a', 'b'): -1, ('b', 'c'): 1}
sampler = oj.SASampler(iteration=10) #Try to solve with SA 10 times.You can solve it 10 times at once with the argument iteration.
response = sampler.sample_ising(h, J)
print(response.states)
print(response.energies)
print(response.indices)
print(response.samples)
print(response.min_samples)
# Q_Create ij as a dictionary.
Q = {(0, 0): -1, (0, 1): -1, (1, 2): 1, (2, 2): 1}
sampler = oj.SASampler(iteration=3)
#When solving QUBO.sample_Let's use qubo
response = sampler.sample_qubo(Q)
print(response.states)
N = 50
#Randomly create a Qij
Q = {(i, j): random.uniform(-1, 1) for i in range(N) for j in range(i+1, N)}
#Solve with OpenJij
sampler = oj.SASampler(iteration=100)
response = sampler.sample_qubo(Q)
#Let's take a look at the energy.
print(response.energies[:5])
fig=plt.figure()
plt.hist(response.energies, bins=15)
plt.xlabel('Energy', fontsize=15)
plt.ylabel('Frequency', fontsize=15)
#plt.show()
fig.savefig('ch1.png')
min_samples = response.min_samples
print(min_samples)
File
Question of Quantum Computer 16 "Basics of Quantum Annealing" https://qiita.com/kaizen_nagoya/items/683961f9e747e144413d
docker (28) Openjij tutorial with docker https://qiita.com/kaizen_nagoya/items/09a52b25d54091c8db6f
Today's python error (macOS) https://qiita.com/kaizen_nagoya/items/bb79e96104b5ff536de8
Introduce Python3 (Anaconda3) to Windows (M.S.) (7 traps) https://qiita.com/kaizen_nagoya/items/7bfd7ecdc4e8edcbd679
2019 version of Anaconda3 (python3) on Windows (M.S.) https://qiita.com/kaizen_nagoya/items/c05c0d690fcfd3402534
http://www.latex-cmd.com/special/greek.html
https://www.koka.ac.jp/morigiwa/sfc/greek.htm
letter | command | Lowercase | command |
---|---|---|---|
A | \alpha | ||
B | \beta | ||
\Gamma | \gamma | ||
\Delta | \delta | ||
E | \epsilon | ||
Z | \zeta | ||
H | \eta | ||
\Theta | \theta | ||
I | \iota | ||
K | \kappa | ||
\Lambda | \lambda | ||
M | \mu | ||
N | \nu | ||
\Xi | \xi | ||
O | o | (omicron) | |
\Pi | \pi | ||
P | \rho | ||
\Sigma | \sigma | ||
T | \tau | ||
\Upsilon | \upsilon | ||
\Phi | \phi | ||
X | \chi | ||
\Psi | \psi | ||
\Omega | \omega |
LaTex input is almost equal to reading. The following three may be difficult to understand. xi to Kusai, Guzai, Kushi. chi is Kai. o has no LaTeX command and is read by Omiccilon.
perpendicular
ver. 0.01 First draft 20191115 ver. 0.02 Addition of reference materials 20191116
<a href="https://b.hatena.ne.jp/entry/s/qiita.com/kaizen_nagoya/items/116a5a6add72a5bf1630" class="hatena-bookmark-button" data-hatena-bookmark-layout="basic" -label-counter "data-hatena-bookmark-lang =" ja "title =" Add this entry to Hatena Bookmark "> <img src =" https://b.st-hatena.com/images/v4/public /entry-button/[email protected] "alt =" Add this entry to Hatena Bookmark "width =" 20 "height =" 20 "style =" border: none; "/>
Recommended Posts