python==3.8 plotly==4.10.0
Artikel zum Spielen mit Optionen unter Bezugnahme auf die offizielle Galerie
import plotly.express as px
df = px.data.iris()
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species", title="iris scatter plot")
fig.show()
Separate Zeichnungen zum Zeichnen mit Facette Geben Sie Zeile und Spalte in add_trace an, um zu entscheiden, welche Zeichnung überschrieben werden soll
import plotly.express as px
df = px.data.iris()
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species", facet_col="species",
title="Add line subplot")
reference_line = go.Scatter(x=[2, 4],
y=[4, 8],
mode="lines",
line=go.scatter.Line(color="gray"),
showlegend=False)
fig.add_trace(reference_line, row=1, col=1)
fig.add_trace(reference_line, row=1, col=2)
fig.add_trace(reference_line, row=1, col=3)
fig.show()
from plotly.subplots import make_subplots
fig = make_subplots(rows=1, cols=2)
fig.add_scatter(y=[4, 2, 3.5], mode="markers",
marker=dict(size=20, color="LightSeaGreen"),
name="a", row=1, col=1)
fig.add_bar(y=[2, 1, 3],
marker=dict(color="MediumPurple"),
name="b", row=1, col=1)
fig.add_scatter(y=[2, 3.5, 4], mode="markers",
marker=dict(size=20, color="MediumPurple"),
name="c", row=1, col=2)
fig.add_bar(y=[1, 3, 2],
marker=dict(color="LightSeaGreen"),
name="d", row=1, col=2)
fig.show()
import plotly.express as px
df = px.data.iris()
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species",
size='petal_length')
fig.show()
import plotly.express as px
fig = px.scatter(df, x="sepal_length", y="sepal_width", text="species", size_max=60)
fig.update_traces(textposition='top center')
fig.update_layout(
height=800,
title_text='iris label'
)
fig.show()
import plotly.express as px
df = px.data.iris()
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species", marginal_y="violin",
marginal_x="box", trendline="ols", template="simple_white")
fig.show()
pair plot
import plotly.express as px
df = px.data.iris()
fig = px.scatter_matrix(df, dimensions=["sepal_width", "sepal_length", "petal_width", "petal_length"], color="species")
fig.show()
3d scatter
import plotly.express as px
df = px.data.iris()
fig = px.scatter_3d(df, x='sepal_length', y='sepal_width', z='petal_width',
color='petal_length', symbol='species')
fig.show()
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from sklearn.svm import SVR
df = px.data.iris()
#Machen Sie eine Zuordnung von X.
margin = 0
X = df[['sepal_width', 'sepal_length']]
y = df['petal_width']
model = SVR(C=1.)
model.fit(X, y)
#Einzelheiten(Gittergewebe,Gitter)Tritt ein
mesh_size = .02
x_min, x_max = X.sepal_width.min() - margin, X.sepal_width.max() + margin
y_min, y_max = X.sepal_length.min() - margin, X.sepal_length.max() + margin
xrange = np.arange(x_min, x_max, mesh_size)
yrange = np.arange(y_min, y_max, mesh_size)
xx, yy = np.meshgrid(xrange, yrange)
#Vorhersage für alle Punkte auf dem Netz
pred = model.predict(np.c_[xx.ravel(), yy.ravel()])
pred = pred.reshape(xx.shape)
#Zeichnen Sie den ursprünglichen Punkt und dann x1,Schieben Sie die Gitterfläche mit z um x2 nach oben
#Eine Fläche wird mit einer Fläche gezeichnet, die alle Punkte verbindet.
fig = px.scatter_3d(df, x='sepal_width', y='sepal_length', z='petal_width')
fig.update_traces(marker=dict(size=5))
fig.add_traces(go.Surface(x=xrange, y=yrange, z=pred, name='pred_surface'))
fig.show()
fig = go.Figure(data=[go.Surface(z=pred)])
fig.update_traces(contours_z=dict(show=True, usecolormap=True,
highlightcolor="limegreen", project_z=True))
fig.show()
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Contour(
z=pred,
colorscale="Cividis",
))
fig.show()
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Contour(
z=pred,
colorscale="Cividis",
))
fig.add_trace(
go.Scatter(
x=[20,40,60,70,80,100,90,80],
y=[20,40,80,100,120,140,160,160],
mode="markers+lines",
name="steepest",
line=dict(
color="red"
)
)
)
fig.show()
from sklearn.linear_model import LinearRegression
model_LR = LinearRegression()
model_LR.fit(X, y)
pred_LR = model_LR.predict(np.c_[xx.ravel(), yy.ravel()])
pred_LR = pred_LR.reshape(xx.shape)
fig = px.scatter_3d(df, x='sepal_width', y='sepal_length', z='petal_width',color='species')
fig.update_traces(marker=dict(size=5))
fig.add_traces(go.Surface(x=xrange, y=yrange, z=pred_LR, name='pred_LR_surface',colorscale='Viridis'))
fig.show()
type = line
Erstellen Sie ein gestapeltes Flächendiagramm, indem Sie die Streuung als Typ = Linie festlegen und den Stapel angeben
import plotly.graph_objects as go
x=['Winter', 'Spring', 'Summer', 'Fall']
fig = go.Figure()
fig.add_trace(go.Scatter(
x=x, y=[30, 30, 30, 30],
hoverinfo='x+y',
mode='lines',
line=dict(width=0.5, color='rgb(131, 90, 1)'),
stackgroup='one'
))
fig.add_trace(go.Scatter(
x=x, y=[20, 20, 20, 20],
hoverinfo='x+y',
mode='lines',
line=dict(width=0.5, color='rgb(111, 1, 219)'),
stackgroup='one'
))
fig.add_trace(go.Scatter(
x=x, y=[10, 10, 10, 10],
hoverinfo='x+y',
mode='lines',
line=dict(width=0.5, color='rgb(1, 247, 212)'),
stackgroup='one'
))
fig.update_layout(yaxis_range=(0, 100))
fig.show()
import plotly.express as px
fig = px.area(x=['Winter', 'Spring', 'Summer', 'Fall'],
y=[[30, 30, 30, 30],
[20, 20, 20, 20],
[10, 10, 10, 10]]
)
fig.update_layout(yaxis_range=(0, 100))
fig.show()
df = px.data.stocks()
fig = px.area(df,x='date', y=df.columns[1:6], title="6 company stocks plot")
fig.show()
import plotly.express as px
df = px.data.gapminder().query("country=='Brazil'")
fig = px.line_3d(df, x="gdpPercap", y="pop", z="year")
fig.show()
Recommended Posts