conda create -y -n tf2 -c anaconda tensorflow-gpu
conda activate tf2
python -c '
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"]="3" #Deaktivieren Sie Tensorflow-Protokollmeldungen
import tensorflow as tf
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices("GPU")))'
# Num GPUs Available: 1
Die GPU wurde erkannt! : smiley:
Lassen Sie uns das Paket überprüfen.
conda list -n tf2 | grep -e python -e cud -e tensorflow
# cudatoolkit 10.1.243 h6bb024c_0 anaconda
# cudnn 7.6.5 cuda10.1_0 anaconda
# python 3.7.7 hcf32534_0_cpython anaconda
# tensorflow 2.1.0 gpu_py37h7a4bb67_0 anaconda
# tensorflow-base 2.1.0 gpu_py37h6c5654b_0 anaconda
# tensorflow-estimator 2.1.0 pyhd54b08b_0 anaconda
# tensorflow-gpu 2.1.0 h0d30ee6_0 anaconda
CUDA, CuDNN wurde letztes Jahr um diese Zeit nicht installiert Jetzt ist alles auf einen Schlag installiert: clap:
#R Installation
conda install -y -n tf2 r-essentials r-base
cat << 'EOF' > r_env.R
options(repos = "https://cran.rstudio.com")
if (!requireNamespace("reticulate", quietly = T)) install.packages("reticulate")
reticulate::use_condaenv("tf2")
library(reticulate)
#Überprüfen Sie, ob die tf2-Umgebung aufgerufen wird:
print(reticulate::py_config()[1])
#Überprüfen Sie, ob die GPU erkannt wird.
Sys.setenv(TF_CPP_MIN_LOG_LEVEL = 3) #Deaktivieren Sie Tensorflow-Protokollmeldungen
tf <- import("tensorflow")
print(sprintf("Num GPUs Available: %d",
length(tf$config$experimental$list_physical_devices("GPU"))))
EOF
Rscript r_env.R
#Ausführungsergebnis
# $python
# [1] "XXX/anaconda3/envs/tf2/bin/python"
# [1] "Num GPUs Available: 1"
GPU wurde auch in R erkannt! Jetzt können Sie die GPU verwenden, um die Gorigori-Berechnung zu drehen!
Recommended Posts