[PYTHON] Implementieren Sie den GraphGatherLayer von DeepChem mit der benutzerdefinierten Ebene von PyTorch

Einführung

Nach GraphConvLayer und GraphPoolLayer habe ich DeepChems GraphGatherLayer mit einer benutzerdefinierten Schicht Pytorch implementiert.

Umgebung

Quelle

Ich habe DeepChems GraphGatherLayer auf PyTorch portiert und versucht, das Ausgabeergebnis des vorherigen GraphConvLayer dem erstellten GraphPoolLayer zuzuführen.

import torch
from torch.utils import data
from deepchem.feat.graph_features import ConvMolFeaturizer
from deepchem.feat.mol_graphs import ConvMol
import torch.nn as nn
import numpy as np
from torch_scatter import scatter_max


def unsorted_segment_sum(data, segment_ids, num_segments):
    
    # segment_ids is a 1-D tensor repeat it to have the same shape as data
    if len(segment_ids.shape) == 1:
        s = torch.prod(torch.tensor(data.shape[1:])).long()
        segment_ids = segment_ids.repeat_interleave(s).view(segment_ids.shape[0], *data.shape[1:])

    shape = [num_segments] + list(data.shape[1:])
    tensor = torch.zeros(*shape).scatter_add(0, segment_ids, data.float())
    tensor = tensor.type(data.dtype)
    return tensor

class GraphConv(nn.Module):

    def __init__(self,
               in_channel,
               out_channel,
               min_deg=0,
               max_deg=10,
               activation=lambda x: x
               ):

        super().__init__()
        self.in_channel = in_channel
        self.out_channel = out_channel
        self.min_degree = min_deg
        self.max_degree = max_deg

        num_deg = 2 * self.max_degree + (1 - self.min_degree)

        self.W_list = [
            nn.Parameter(torch.Tensor(
                np.random.normal(size=(in_channel, out_channel))).double())
            for k in range(num_deg)]

        self.b_list = [
            nn.Parameter(torch.Tensor(np.zeros(out_channel)).double()) for k in range(num_deg)]

    def forward(self, atom_features, deg_slice, deg_adj_lists):

        #print("deg_adj_list")
        #print(deg_adj_lists)

        W = iter(self.W_list)
        b = iter(self.b_list)

        # Sum all neighbors using adjacency matrix
        deg_summed = self.sum_neigh(atom_features, deg_adj_lists)

        # Get collection of modified atom features
        new_rel_atoms_collection = (self.max_degree + 1 - self.min_degree) * [None]

        for deg in range(1, self.max_degree + 1):
            # Obtain relevant atoms for this degree
            rel_atoms = deg_summed[deg - 1]

            # Get self atoms
            begin = deg_slice[deg - self.min_degree, 0]
            size = deg_slice[deg - self.min_degree, 1]

            self_atoms = torch.narrow(atom_features, 0, int(begin), int(size))

            # Apply hidden affine to relevant atoms and append
            rel_out = torch.matmul(rel_atoms, next(W)) + next(b)
            self_out = torch.matmul(self_atoms, next(W)) + next(b)

            out = rel_out + self_out
            new_rel_atoms_collection[deg - self.min_degree] = out

        # Determine the min_deg=0 case
        if self.min_degree == 0:
            deg = 0

            begin = deg_slice[deg - self.min_degree, 0]
            size = deg_slice[deg - self.min_degree, 1]
            self_atoms = torch.narrow(atom_features, 0, int(begin), int(size))

            # Only use the self layer
            out = torch.matmul(self_atoms, next(W)) + next(b)

            new_rel_atoms_collection[deg - self.min_degree] = out

        # Combine all atoms back into the list
        #print(new_rel_atoms_collection)
        atom_features = torch.cat(new_rel_atoms_collection, 0)

        return atom_features


    def sum_neigh(self, atoms, deg_adj_lists):
        """Store the summed atoms by degree"""
        deg_summed = self.max_degree * [None]

        for deg in range(1, self.max_degree + 1):
            index = torch.tensor(deg_adj_lists[deg - 1], dtype=torch.int64)
            gathered_atoms = atoms[index]

            # Sum along neighbors as well as self, and store
            summed_atoms = torch.sum(gathered_atoms, 1)
            deg_summed[deg - 1] = summed_atoms

        return deg_summed


class GraphPool(nn.Module):

    def __init__(self, min_degree=0, max_degree=10):
        super().__init__()
        self.min_degree = min_degree
        self.max_degree = max_degree


    def forward(self, atom_features, deg_slice, deg_adj_lists):

        # Perform the mol gather
        deg_maxed = (self.max_degree + 1 - self.min_degree) * [None]

        # Tensorflow correctly processes empty lists when using concat
        for deg in range(1, self.max_degree + 1):
            # Get self atoms
            begin = deg_slice[deg - self.min_degree, 0]
            size = deg_slice[deg - self.min_degree, 1]
            self_atoms = torch.narrow(atom_features, 0, int(begin), int(size))

            # Expand dims
            self_atoms = torch.unsqueeze(self_atoms, 1)

            # always deg-1 for deg_adj_lists
            index = torch.tensor(deg_adj_lists[deg - 1], dtype=torch.int64)

            gathered_atoms = atom_features[index]
            gathered_atoms = torch.cat([self_atoms, gathered_atoms], 1)

            if gathered_atoms.shape[0] > 0:
                maxed_atoms = torch.max(gathered_atoms, 1)[0]
            else:
                maxed_atoms = torch.Tensor([])

            deg_maxed[deg - self.min_degree] = maxed_atoms

        if self.min_degree == 0:
            begin = deg_slice[0, 0]
            size = deg_slice[0, 1]
            self_atoms = torch.narrow(atom_features, 0, int(begin), int(size))
            deg_maxed[0] = self_atoms

        return torch.cat(deg_maxed, 0)


class GraphGather(nn.Module):

    def __init__(self, batch_size):
        super().__init__()
        self.batch_size = batch_size

    def forward(self, atom_features, membership):

        assert self.batch_size > 1, "graph_gather requires batches larger than 1"

        sparse_reps = unsorted_segment_sum(atom_features, membership, self.batch_size)
        max_reps = scatter_max(atom_features, membership, dim=0)
        mol_features = torch.cat([sparse_reps, max_reps[0]], 1)
        return mol_features


class GCNDataset(data.Dataset):

    def __init__(self, smiles_list, label_list):
        self.smiles_list = smiles_list
        self.label_list = label_list

    def __len__(self):
        return len(self.smiles_list)

    def __getitem__(self, index):
        return self.smiles_list[index], self.label_list[index]


def gcn_collate_fn(batch):
    from rdkit import Chem
    cmf = ConvMolFeaturizer()

    mols = []
    labels = []

    for sample, label in batch:
        mols.append(Chem.MolFromSmiles(sample))
        labels.append(torch.tensor(label))

    conv_mols = cmf.featurize(mols)
    multiConvMol = ConvMol.agglomerate_mols(conv_mols)

    atom_feature = torch.tensor(multiConvMol.get_atom_features(), dtype=torch.float64)
    deg_slice = torch.tensor(multiConvMol.deg_slice, dtype=torch.float64)
    membership = torch.tensor(multiConvMol.membership, dtype=torch.int64)
    deg_adj_lists = []

    for i in range(1, len(multiConvMol.get_deg_adjacency_lists())):
        deg_adj_lists.append(multiConvMol.get_deg_adjacency_lists()[i])

    return atom_feature, deg_slice, membership, deg_adj_lists,  labels


def main():
    dataset = GCNDataset(["CCC", "CCCC", "CCCCC"], [1, 0, 1])
    dataloader = data.DataLoader(dataset, batch_size=3, shuffle=False, collate_fn =gcn_collate_fn)

    gc = GraphConv(75, 20)
    gp = GraphPool()
    gt = GraphGather(3)
    for atom_feature, deg_slice, membership, deg_adj_lists, labels in dataloader:
        print("atom_feature")
        print(atom_feature)
        print("deg_slice")
        print(deg_slice)
        print("membership")
        print(membership)
        print("result")
        gc_out = gc(atom_feature, deg_slice, deg_adj_lists)
        gp_out = gp(gc_out, deg_slice, deg_adj_lists)
        #print(gp_out)
        gt_out = gt(gp_out, membership)
        print(gt_out)


if __name__ == "__main__":
    main()

Ergebnis

Ja, nicht. Die resultierende Form ist vorerst die Anzahl der Moleküle x 40 Dimensionen, und es ist ersichtlich, dass die Atome zu den Molekülen aggregiert sind. Ich mag dieses White-Box-Gefühl wie gewohnt (die Kommentare sind jedes Mal genau gleich, also überspringe ich sie). Dieses Mal hatte ich große Probleme, die unsortierten_segment_sum- und unsorted_segment_max-Operationen von TensorFlow zu portieren. Die Überprüfung beginnt gleich.

tensor([[ 7.7457,  2.1970, 22.1151,  1.8238,  7.5860, 15.5079, -1.3865,  5.3634,
          0.3872, 24.7713, 30.9865, 13.0032,  5.8331, 12.8195,  9.2520, 16.4660,
         -8.8977, 10.5881, 16.8875,  3.6356,  2.5819,  0.7323,  7.3717,  0.6079,
          2.5287,  5.1693, -0.4622,  1.7878,  0.1291,  8.2571, 10.3288,  4.3344,
          1.9444,  4.2732,  3.0840,  5.4887, -2.9659,  3.5294,  5.6292,  1.2119],
        [12.4624, 16.9705, 26.8321,  4.3047, 17.4027, 23.3370, -1.8487,  7.1511,
          0.2538, 23.2520, 25.0874, 17.3375,  7.7775,  9.7369,  8.3362, 20.8373,
         -4.3081, 14.1175, 17.6781,  6.4011,  3.1156,  4.2426,  6.7080,  1.0762,
          4.3507,  5.8342, -0.4622,  1.7878,  0.0634,  5.8130,  6.2718,  4.3344,
          1.9444,  2.4342,  2.0840,  5.2093, -1.0770,  3.5294,  4.4195,  1.6003],
        [17.1790, 31.7441, 33.5401,  8.6282, 27.2195, 31.1660, -4.6301,  4.2145,
         -1.0452, 29.0650, 31.3592, 15.0395, 14.6857, 12.1711, 10.4202, 26.0466,
          3.5187, 10.4842, 22.0976,  9.1667,  3.6493,  7.7530,  6.7080,  2.1586,
          6.1727,  6.4992, -0.4622,  1.7878,  0.0634,  5.8130,  6.2718,  4.3344,
          3.5990,  2.4342,  2.0840,  5.2093,  1.8909,  3.5294,  4.4195,  1.9887]],
       dtype=torch.float64, grad_fn=<CatBackward>)

Referenz

Recommended Posts

Implementieren Sie den GraphGatherLayer von DeepChem mit der benutzerdefinierten Ebene von PyTorch
Implementieren Sie den GraphConvLayer von DeepChem in der benutzerdefinierten Ebene von PyTorch
Implementieren Sie den GraphPoolLayer von DeepChem in der benutzerdefinierten Ebene von PyTorch
Implementieren Sie einen benutzerdefinierten View Decorator mit Pyramid
Implementieren Sie ein benutzerdefiniertes Benutzermodell in Django
Implementieren Sie den DataLoader von PyTorch, der einen Mini-Batch zurückgibt, der in DeepChems ConvMol Featurizer enthalten ist
Implementieren Sie Custom Authorizer für die Firebase-Authentifizierung in Chalice
Implementieren Sie XENO mit Python
Benutzerdefinierte Sortierung in Python3
Implementieren Sie sum in Python
Implementieren Sie Traceroute in Python 3