Aber es hat einen Zweck. OpenCV verwendet Numpys ndarray-Array, um die Daten zu verarbeiten.
Das heißt, Sie können es nicht reproduzieren, indem Sie ein eindimensionales Array für Grau und ein dreidimensionales Array für Farbe werfen! Ich habe eine Metamorphose-Herausforderung durchgeführt, bei der die Manieren und Regeln völlig ignoriert und jedes Mal gebrochen wurden. Dieses Mal wurde die Arbeit erfolgreich abgeschlossen Ich werde einen Code hochladen, der für die Welt keinen Nutzen hat.
Ich habe einen Onkel Pfeifenarbeiter in einer 12x12 Anordnung gezeichnet.
mario.py
import cv2
import numpy as np
val = 0
#Erstellen Sie eine leere Liste(12*12 für alle Elemente 0)
rchannel = [[val] * 12 for i in range(12)]
rchannel = np.array(rchannel)
gchannel = [[val] * 12 for i in range(12)]
gchannel = np.array(gchannel)
bchannel = [[val] * 12 for i in range(12)]
bchannel = np.array(bchannel)
#Die handgemachte Zone der Hölle
rchannel[3,3:8] = 255
rchannel[4,2:11] = 255
rchannel[5,2:5] = 146
gchannel[5,2:5] = 41
bchannel[5,2:5] = 6
rchannel[5,5:7] = 248
gchannel[5,5:7] = 178
bchannel[5,5:7] = 108
rchannel[5,7] = 146
gchannel[5,7] = 41
bchannel[5,7] = 6
rchannel[5,8] = 248
gchannel[5,8] = 178
bchannel[5,8] = 108
rchannel[6,1] = 146
gchannel[6,1] = 41
bchannel[6,1] = 6
rchannel[6,2] = 248
gchannel[6,2] = 178
bchannel[6,2] = 108
rchannel[6,3] = 146
gchannel[6,3] = 41
bchannel[6,3] = 6
rchannel[6,4:7] = 248
gchannel[6,4:7] = 178
bchannel[6,4:7] = 108
rchannel[6,7] = 146
gchannel[6,7] = 41
bchannel[6,7] = 6
rchannel[6,8:11] = 248
gchannel[6,8:11] = 178
bchannel[6,8:11] = 108
rchannel[7,1] = 146
gchannel[7,1] = 41
bchannel[7,1] = 6
rchannel[7,2] = 248
gchannel[7,2] = 178
bchannel[7,2] = 108
rchannel[7,3:5] = 146
gchannel[7,3:5] = 41
bchannel[7,3:5] = 6
rchannel[7,5:8] = 248
gchannel[7,5:8] = 178
bchannel[7,5:8] = 108
rchannel[7,8] = 146
gchannel[7,8] = 41
bchannel[7,8] = 6
rchannel[7,9:11] = 248
gchannel[7,9:11] = 178
bchannel[7,9:11] = 108
rchannel[7,11] = 146
gchannel[7,11] = 41
bchannel[7,11] = 6
rchannel[8,1:3] = 146
gchannel[8,1:3] = 41
bchannel[8,1:3] = 6
rchannel[8,3:7] = 248
gchannel[8,3:7] = 178
bchannel[8,3:7] = 108
rchannel[8,7:11] = 146
gchannel[8,7:11] = 41
bchannel[8,7:11] = 6
rchannel[9,3:10] = 248
gchannel[9,3:10] = 178
bchannel[9,3:10] = 108
rchannel[10,2:4] = 255
bchannel[10,4] = 255
rchannel[10,5:9] = 255
rchannel[11,1:4] = 255
bchannel[11,4] = 255
rchannel[11,5:11] = 255
#Kanäle kombinieren
data_map = np.stack((bchannel,gchannel,rchannel),-1)
#Datentyp ändern → Jetzt kann es von OpenCV verarbeitet werden
data_map = np.array(data_map, dtype="uint8")
#Vergrößert für einfache Visualisierung
data_map = cv2.resize(data_map, (400, 400),interpolation=cv2.INTER_NEAREST)
#Anzeige
cv2.imshow("show",data_map)
cv2.waitKey(0)
cv2.destroyAllWindows()
Mai 2020 ist ein gutes Jahr.
Recommended Posts