Dies ist ein Beispiel für die Implementierung einer Liste in der Sprache C.
Implementieren wir eine bidirektionale Liste mit den folgenden beiden Makros.
--list_head, ein Listenmanipulationsmakro, das häufig im Linux-Kernel verwendet wird --Queue, ein BSD-basiertes Listenoperationsmakro
Die Ausführungsumgebung ist CentOS7 64bit, gcc 4.8.5.
Der Linux-Kernel hat die folgende Struktur und einige Makros, die diese Struktur für Listenoperationen verwenden.
struct list_head {
struct list_head *next, *prev;
};
Es ist schwer zu verstehen, wie es funktioniert, aber es ist ein nützliches Makro, um zu lernen, wie man es benutzt.
Holen Sie sich zuerst den Kernel-Quellcode.
# yum install kernel-devel
...
Installation:
kernel-devel.x86_64 0:3.10.0-957.5.1.el7
Hat vervollständigt!
Da das Makro der Liste linux / list.h ist, handelt es sich um die folgende Datei.
/usr/src/kernels/3.10.0-957.5.1.el7.x86_64/include/linux/list.h
Da linux / list.h eine Header-Datei für den Kernel ist, treten häufig Kompilierungsfehler auf, wenn Sie versuchen, sie wie in einer Userland-Anwendung zu verwenden, was unpraktisch ist. (~~ Es ist mühsam, den Fehler zu beheben ~~)
Also werde ich es ein wenig modifizieren.
$ cp /usr/src/kernels/3.10.0-957.5.1.el7.x86_64/include/linux/list.h .
$ vim list.h
Änderungspunkt
#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H
struct list_head {
struct list_head *next, *prev;
};
/**
* container_of - cast a member of a structure out to the containing structure
* @ptr: the pointer to the member.
* @type: the type of the container struct this is embedded in.
* @member: the name of the member within the struct.
*
*/
#define container_of(ptr, type, member) ({ \
const __typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr - offsetof(type,member) );})
/*
* Simple doubly linked list implementation.
*
* Some of the internal functions ("__xxx") are useful when
* manipulating whole lists rather than single entries, as
* sometimes we already know the next/prev entries and we can
* generate better code by using them directly rather than
* using the generic single-entry routines.
*/
#define LIST_HEAD_INIT(name) { &(name), &(name) }
#define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name)
static inline void INIT_LIST_HEAD(struct list_head *list)
{
list->next = list;
list->prev = list;
}
/*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
#ifndef CONFIG_DEBUG_LIST
static inline void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)
{
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}
#else
extern void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next);
#endif
/**
* list_add - add a new entry
* @new: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*/
static inline void list_add(struct list_head *new, struct list_head *head)
{
__list_add(new, head, head->next);
}
/**
* list_add_tail - add a new entry
* @new: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*/
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
__list_add(new, head->prev, head);
}
/*
* Delete a list entry by making the prev/next entries
* point to each other.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
next->prev = prev;
prev->next = next;
}
/**
* list_del - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty() on entry does not return true after this, the entry is
* in an undefined state.
*/
#ifndef CONFIG_DEBUG_LIST
static inline void __list_del_entry(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
}
static inline void list_del(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->next = (struct list_head*)0xdeadbeef;
entry->prev = (struct list_head*)0xdeadbeef;
}
#else
extern void __list_del_entry(struct list_head *entry);
extern void list_del(struct list_head *entry);
#endif
/**
* list_replace - replace old entry by new one
* @old : the element to be replaced
* @new : the new element to insert
*
* If @old was empty, it will be overwritten.
*/
static inline void list_replace(struct list_head *old,
struct list_head *new)
{
new->next = old->next;
new->next->prev = new;
new->prev = old->prev;
new->prev->next = new;
}
static inline void list_replace_init(struct list_head *old,
struct list_head *new)
{
list_replace(old, new);
INIT_LIST_HEAD(old);
}
/**
* list_del_init - deletes entry from list and reinitialize it.
* @entry: the element to delete from the list.
*/
static inline void list_del_init(struct list_head *entry)
{
__list_del_entry(entry);
INIT_LIST_HEAD(entry);
}
/**
* list_move - delete from one list and add as another's head
* @list: the entry to move
* @head: the head that will precede our entry
*/
static inline void list_move(struct list_head *list, struct list_head *head)
{
__list_del_entry(list);
list_add(list, head);
}
/**
* list_move_tail - delete from one list and add as another's tail
* @list: the entry to move
* @head: the head that will follow our entry
*/
static inline void list_move_tail(struct list_head *list,
struct list_head *head)
{
__list_del_entry(list);
list_add_tail(list, head);
}
/**
* list_is_last - tests whether @list is the last entry in list @head
* @list: the entry to test
* @head: the head of the list
*/
static inline int list_is_last(const struct list_head *list,
const struct list_head *head)
{
return list->next == head;
}
/**
* list_empty - tests whether a list is empty
* @head: the list to test.
*/
static inline int list_empty(const struct list_head *head)
{
return head->next == head;
}
/**
* list_empty_careful - tests whether a list is empty and not being modified
* @head: the list to test
*
* Description:
* tests whether a list is empty _and_ checks that no other CPU might be
* in the process of modifying either member (next or prev)
*
* NOTE: using list_empty_careful() without synchronization
* can only be safe if the only activity that can happen
* to the list entry is list_del_init(). Eg. it cannot be used
* if another CPU could re-list_add() it.
*/
static inline int list_empty_careful(const struct list_head *head)
{
struct list_head *next = head->next;
return (next == head) && (next == head->prev);
}
/**
* list_rotate_left - rotate the list to the left
* @head: the head of the list
*/
static inline void list_rotate_left(struct list_head *head)
{
struct list_head *first;
if (!list_empty(head)) {
first = head->next;
list_move_tail(first, head);
}
}
/**
* list_is_singular - tests whether a list has just one entry.
* @head: the list to test.
*/
static inline int list_is_singular(const struct list_head *head)
{
return !list_empty(head) && (head->next == head->prev);
}
static inline void __list_cut_position(struct list_head *list,
struct list_head *head, struct list_head *entry)
{
struct list_head *new_first = entry->next;
list->next = head->next;
list->next->prev = list;
list->prev = entry;
entry->next = list;
head->next = new_first;
new_first->prev = head;
}
/**
* list_cut_position - cut a list into two
* @list: a new list to add all removed entries
* @head: a list with entries
* @entry: an entry within head, could be the head itself
* and if so we won't cut the list
*
* This helper moves the initial part of @head, up to and
* including @entry, from @head to @list. You should
* pass on @entry an element you know is on @head. @list
* should be an empty list or a list you do not care about
* losing its data.
*
*/
static inline void list_cut_position(struct list_head *list,
struct list_head *head, struct list_head *entry)
{
if (list_empty(head))
return;
if (list_is_singular(head) &&
(head->next != entry && head != entry))
return;
if (entry == head)
INIT_LIST_HEAD(list);
else
__list_cut_position(list, head, entry);
}
static inline void __list_splice(const struct list_head *list,
struct list_head *prev,
struct list_head *next)
{
struct list_head *first = list->next;
struct list_head *last = list->prev;
first->prev = prev;
prev->next = first;
last->next = next;
next->prev = last;
}
/**
* list_splice - join two lists, this is designed for stacks
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static inline void list_splice(const struct list_head *list,
struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head, head->next);
}
/**
* list_splice_tail - join two lists, each list being a queue
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static inline void list_splice_tail(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head->prev, head);
}
/**
* list_splice_init - join two lists and reinitialise the emptied list.
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* The list at @list is reinitialised
*/
static inline void list_splice_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head, head->next);
INIT_LIST_HEAD(list);
}
}
/**
* list_splice_tail_init - join two lists and reinitialise the emptied list
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* Each of the lists is a queue.
* The list at @list is reinitialised
*/
static inline void list_splice_tail_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head->prev, head);
INIT_LIST_HEAD(list);
}
}
/**
* list_entry - get the struct for this entry
* @ptr: the &struct list_head pointer.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*/
#define list_entry(ptr, type, member) \
container_of(ptr, type, member)
/**
* list_first_entry - get the first element from a list
* @ptr: the list head to take the element from.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*
* Note, that list is expected to be not empty.
*/
#define list_first_entry(ptr, type, member) \
list_entry((ptr)->next, type, member)
/**
* list_last_entry - get the last element from a list
* @ptr: the list head to take the element from.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*
* Note, that list is expected to be not empty.
*/
#define list_last_entry(ptr, type, member) \
list_entry((ptr)->prev, type, member)
/**
* list_first_entry_or_null - get the first element from a list
* @ptr: the list head to take the element from.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*
* Note that if the list is empty, it returns NULL.
*/
#define list_first_entry_or_null(ptr, type, member) \
(!list_empty(ptr) ? list_first_entry(ptr, type, member) : NULL)
/**
* list_next_entry - get the next element in list
* @pos: the type * to cursor
* @member: the name of the list_struct within the struct.
*/
#define list_next_entry(pos, member) \
list_entry((pos)->member.next, __typeof(*(pos)), member)
/**
* list_prev_entry - get the prev element in list
* @pos: the type * to cursor
* @member: the name of the list_struct within the struct.
*/
#define list_prev_entry(pos, member) \
list_entry((pos)->member.prev, __typeof(*(pos)), member)
/**
* list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)
/**
* __list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*
* This variant doesn't differ from list_for_each() any more.
* We don't do prefetching in either case.
*/
#define __list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)
/**
* list_for_each_prev - iterate over a list backwards
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each_prev(pos, head) \
for (pos = (head)->prev; pos != (head); pos = pos->prev)
/**
* list_for_each_safe - iterate over a list safe against removal of list entry
* @pos: the &struct list_head to use as a loop cursor.
* @n: another &struct list_head to use as temporary storage
* @head: the head for your list.
*/
#define list_for_each_safe(pos, n, head) \
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, n = pos->next)
/**
* list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
* @pos: the &struct list_head to use as a loop cursor.
* @n: another &struct list_head to use as temporary storage
* @head: the head for your list.
*/
#define list_for_each_prev_safe(pos, n, head) \
for (pos = (head)->prev, n = pos->prev; \
pos != (head); \
pos = n, n = pos->prev)
/**
* list_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry(pos, head, member) \
for (pos = list_entry((head)->next, __typeof(*pos), member); \
&pos->member != (head); \
pos = list_entry(pos->member.next, __typeof(*pos), member))
/**
* list_for_each_entry_reverse - iterate backwards over list of given type.
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry_reverse(pos, head, member) \
for (pos = list_entry((head)->prev, __typeof(*pos), member); \
&pos->member != (head); \
pos = list_entry(pos->member.prev, __typeof(*pos), member))
/**
* list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
* @pos: the type * to use as a start point
* @head: the head of the list
* @member: the name of the list_struct within the struct.
*
* Prepares a pos entry for use as a start point in list_for_each_entry_continue().
*/
#define list_prepare_entry(pos, head, member) \
((pos) ? : list_entry(head, __typeof(*pos), member))
/**
* list_for_each_entry_continue - continue iteration over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Continue to iterate over list of given type, continuing after
* the current position.
*/
#define list_for_each_entry_continue(pos, head, member) \
for (pos = list_entry(pos->member.next, __typeof(*pos), member); \
&pos->member != (head); \
pos = list_entry(pos->member.next, __typeof(*pos), member))
/**
* list_for_each_entry_continue_reverse - iterate backwards from the given point
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Start to iterate over list of given type backwards, continuing after
* the current position.
*/
#define list_for_each_entry_continue_reverse(pos, head, member) \
for (pos = list_entry(pos->member.prev, __typeof(*pos), member); \
&pos->member != (head); \
pos = list_entry(pos->member.prev, __typeof(*pos), member))
/**
* list_for_each_entry_from - iterate over list of given type from the current point
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate over list of given type, continuing from current position.
*/
#define list_for_each_entry_from(pos, head, member) \
for (; &pos->member != (head); \
pos = list_entry(pos->member.next, __typeof(*pos), member))
/**
* list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry_safe(pos, n, head, member) \
for (pos = list_entry((head)->next, __typeof(*pos), member), \
n = list_entry(pos->member.next, __typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, __typeof(*n), member))
/**
* list_for_each_entry_safe_continue - continue list iteration safe against removal
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate over list of given type, continuing after current point,
* safe against removal of list entry.
*/
#define list_for_each_entry_safe_continue(pos, n, head, member) \
for (pos = list_entry(pos->member.next, __typeof(*pos), member), \
n = list_entry(pos->member.next, __typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, __typeof(*n), member))
/**
* list_for_each_entry_safe_from - iterate over list from current point safe against removal
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate over list of given type from current point, safe against
* removal of list entry.
*/
#define list_for_each_entry_safe_from(pos, n, head, member) \
for (n = list_entry(pos->member.next, __typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, __typeof(*n), member))
/**
* list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate backwards over list of given type, safe against removal
* of list entry.
*/
#define list_for_each_entry_safe_reverse(pos, n, head, member) \
for (pos = list_entry((head)->prev, __typeof(*pos), member), \
n = list_entry(pos->member.prev, __typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.prev, __typeof(*n), member))
/**
* list_safe_reset_next - reset a stale list_for_each_entry_safe loop
* @pos: the loop cursor used in the list_for_each_entry_safe loop
* @n: temporary storage used in list_for_each_entry_safe
* @member: the name of the list_struct within the struct.
*
* list_safe_reset_next is not safe to use in general if the list may be
* modified concurrently (eg. the lock is dropped in the loop body). An
* exception to this is if the cursor element (pos) is pinned in the list,
* and list_safe_reset_next is called after re-taking the lock and before
* completing the current iteration of the loop body.
*/
#define list_safe_reset_next(pos, n, member) \
n = list_entry(pos->member.next, __typeof(*pos), member)
#endif
Erstellen, Anzeigen, Drehen und Löschen von Beispiellisten.
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <limits.h>
#include <string.h>
#include <stddef.h>
#include "list.h"
/*Meeresfisch*/
#define FISH_SARDINE "sardine" /*Sardine*/
#define FISH_MACKEREL "mackerel" /*Makrele*/
#define FISH_TUNA "tuna" /*Thunfisch*/
/*Flussfisch*/
#define FISH_SALMON "salmon" /*Lachs*/
#define FISH_SEABASS "seabass" /*Suzuki*/
#define FISH_EEL "eel" /*Aal*/
typedef struct {
struct list_head head;
uint32_t count;
} fishlist_t;
typedef struct {
struct list_head list;
uint32_t id;
char name[64];
} fish_t;
static fishlist_t FishSea;
static fishlist_t FishRiver;
/*ID-Ausstellung*/
static uint32_t get_id(void)
{
static uint32_t id = 0;
return (++id % UINT32_MAX);
}
/*Listeninitialisierung*/
static void init_fish_list(void)
{
INIT_LIST_HEAD(&FishSea.head);
FishSea.count = 0;
INIT_LIST_HEAD(&FishRiver.head);
FishRiver.count = 0;
}
/*Seefisch zur Liste hinzufügen*/
static void add_sea_fish_entry(void)
{
char *fish_name[] = {
FISH_SARDINE,
FISH_MACKEREL,
FISH_TUNA
};
fish_t *fish = NULL;
for (int i = 0; i < sizeof(fish_name)/sizeof(fish_name[0]); i++) {
fish = (fish_t *)malloc(sizeof(fish_t));
if (NULL != fish) {
memset(fish, 0, sizeof(*fish));
snprintf(fish->name, sizeof(fish->name)-1, "%s", fish_name[i]);
fish->id = get_id();
list_add_tail(&fish->list, &FishSea.head);
FishSea.count++;
}
}
}
/*Flussfisch zur Liste hinzufügen*/
static void add_river_fish_entry(void)
{
char *fish_name[] = {
FISH_SALMON,
FISH_SEABASS,
FISH_EEL
};
fish_t *fish = NULL;
for (int i = 0; i < sizeof(fish_name)/sizeof(fish_name[0]); i++) {
fish = (fish_t *)malloc(sizeof(fish_t));
if (NULL != fish) {
memset(fish, 0, sizeof(*fish));
snprintf(fish->name, sizeof(fish->name)-1, "%s", fish_name[i]);
fish->id = get_id();
list_add_tail(&fish->list, &FishRiver.head);
FishRiver.count++;
}
}
}
/*Liste der Seefische anzeigen*/
static void show_sea_fish_entry(void)
{
fish_t *fish = NULL;
fish_t *n = NULL;
printf("----------- show sea fish entry (cnt:%u) ------------\n",
FishSea.count);
list_for_each_entry_safe(fish, n, &(FishSea.head), list) {
printf("id:name = %u:%s\n", fish->id, fish->name);
}
}
/*Liste der Flussfische anzeigen*/
static void show_river_fish_entry(void)
{
fish_t *fish = NULL;
fish_t *n = NULL;
printf("----------- show river fish entry (cnt:%u) ------------\n",
FishRiver.count);
list_for_each_entry_safe(fish, n, &(FishRiver.head), list) {
printf("id:name = %u:%s\n", fish->id, fish->name);
}
}
/*Biegen Sie links in die Liste der Flussfische ab*/
static void rotate_left_sea_fish(void)
{
list_rotate_left(&(FishSea.head));
}
/*Kombinieren Sie Flussfische mit Seefischen*/
static void splice_river_to_sea_fish(void)
{
/*Kombiniert mit Fish River und verbunden mit Fish Sea*/
list_splice(&(FishRiver.head), &(FishSea.head));
FishSea.count += FishRiver.count;
/*Verwenden Sie danach die Liste der Fish River*/
INIT_LIST_HEAD(&(FishRiver.head));
FishRiver.count = 0;
}
/*Löschen Sie alle Einträge in der Seefischliste*/
static void del_sea_fish_all(void)
{
fish_t *e = NULL;
while(!list_empty(&(FishSea.head))) {
e = list_first_entry((&FishSea.head), fish_t, list);
list_del(&e->list);
free(e);
e = NULL;
FishSea.count--;
}
}
int main(void)
{
/*Listeninitialisierung*/
init_fish_list();
/*Liste der Seefische*/
add_sea_fish_entry();
show_sea_fish_entry();
/*Liste der Flussfische*/
add_river_fish_entry();
show_river_fish_entry();
/*Beitrittsliste(river -> sea) */
splice_river_to_sea_fish();
show_sea_fish_entry();
/*Listenrotation*/
rotate_left_sea_fish();
show_sea_fish_entry();
/*Liste löschen*/
del_sea_fish_all();
show_sea_fish_entry();
return 0;
}
$ gcc list.c -std=c99 -o fish_list
$ ./fish_list
----------- show sea fish entry (cnt:3) ------------
id:name = 1:sardine
id:name = 2:mackerel
id:name = 3:tuna
----------- show river fish entry (cnt:3) ------------
id:name = 4:salmon
id:name = 5:seabass
id:name = 6:eel
----------- show sea fish entry (cnt:6) ------------
id:name = 4:salmon
id:name = 5:seabass
id:name = 6:eel
id:name = 1:sardine
id:name = 2:mackerel
id:name = 3:tuna
----------- show sea fish entry (cnt:6) ------------
id:name = 5:seabass
id:name = 6:eel
id:name = 1:sardine
id:name = 2:mackerel
id:name = 3:tuna
id:name = 4:salmon
----------- show sea fish entry (cnt:0) ------------
queue ist ein Makro, das BSD-basierte Listen bearbeitet, aber auch unter Linux verwendet werden kann.
Dies ist auch eine Eigenart in der Verwendung, aber eine nützliche Makrofunktion beim Implementieren einer Liste in einer Userland-Anwendung.
Es gibt jedoch drei Arten von Listen, die unter Linux verwendet werden können: Listen, Endwarteschlangen und zirkuläre Warteschlangen. Listen und Endpunkte sind unidirektional und kreisförmige Warteschlangen sind bidirektionale Listen.
Verwenden Sie die zirkuläre Warteschlange, um das im vorherigen Beispielprogramm verwendete Makro list_head durch CIRCLEQ zu ersetzen.
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <limits.h>
#include <string.h>
#include <stddef.h>
#include <sys/queue.h>
/*Meeresfisch*/
#define FISH_SARDINE "sardine" /*Sardine*/
#define FISH_MACKEREL "mackerel" /*Makrele*/
#define FISH_TUNA "tuna" /*Thunfisch*/
/*Flussfisch*/
#define FISH_SALMON "salmon" /*Lachs*/
#define FISH_SEABASS "seabass" /*Suzuki*/
#define FISH_EEL "eel" /*Aal*/
typedef struct {
CIRCLEQ_HEAD(circleq, fish) head;
uint32_t count;
} fishlist_t;
struct circleq *headp; /* Circular queue head. */
typedef struct fish {
uint32_t id;
CIRCLEQ_ENTRY(fish) list;
char name[64];
} fish_t;
static fishlist_t FishSea;
static fishlist_t FishRiver;
/*ID-Ausstellung*/
static uint32_t get_id(void)
{
static uint32_t id = 0;
return (++id % UINT32_MAX);
}
/*Listeninitialisierung*/
static void init_fish_list(void)
{
CIRCLEQ_INIT(&FishSea.head);
FishSea.count = 0;
CIRCLEQ_INIT(&FishRiver.head);
FishRiver.count = 0;
}
/*Seefisch zur Liste hinzufügen*/
static void add_sea_fish_entry(void)
{
char *fish_name[] = {
FISH_SARDINE,
FISH_MACKEREL,
FISH_TUNA
};
fish_t *fish = NULL;
for (int i = 0; i < sizeof(fish_name)/sizeof(fish_name[0]); i++) {
fish = (fish_t *)malloc(sizeof(fish_t));
if (NULL != fish) {
memset(fish, 0, sizeof(*fish));
snprintf(fish->name, sizeof(fish->name)-1, "%s", fish_name[i]);
fish->id = get_id();
CIRCLEQ_INSERT_TAIL(&FishSea.head, fish, list);
FishSea.count++;
}
}
}
/*Flussfisch zur Liste hinzufügen*/
static void add_river_fish_entry(void)
{
char *fish_name[] = {
FISH_SALMON,
FISH_SEABASS,
FISH_EEL
};
fish_t *fish = NULL;
for (int i = 0; i < sizeof(fish_name)/sizeof(fish_name[0]); i++) {
fish = (fish_t *)malloc(sizeof(fish_t));
if (NULL != fish) {
memset(fish, 0, sizeof(*fish));
snprintf(fish->name, sizeof(fish->name)-1, "%s", fish_name[i]);
fish->id = get_id();
CIRCLEQ_INSERT_TAIL(&FishRiver.head, fish, list);
FishRiver.count++;
}
}
}
/*Liste der Seefische anzeigen*/
static void show_sea_fish_entry(void)
{
fish_t *fish = NULL;
fish_t *n = NULL;
printf("----------- show sea fish entry (cnt:%u) ------------\n",
FishSea.count);
for (fish = (fish_t *)FishSea.head.cqh_first;
fish != (void *)&FishSea.head;
fish = (fish_t *)fish->list.cqe_next) {
printf("id:name = %u:%s\n", fish->id, fish->name);
}
}
/*Liste der Flussfische anzeigen*/
static void show_river_fish_entry(void)
{
fish_t *fish = NULL;
fish_t *n = NULL;
printf("----------- show river fish entry (cnt:%u) ------------\n",
FishRiver.count);
for (fish = (fish_t *)FishRiver.head.cqh_first;
fish != (void *)&FishRiver.head;
fish = (fish_t *)fish->list.cqe_next) {
printf("id:name = %u:%s\n", fish->id, fish->name);
}
}
/*Biegen Sie links in die Liste der Flussfische ab*/
static void rotate_left_sea_fish(void)
{
fish_t *first = (fish_t *)FishSea.head.cqh_first;
CIRCLEQ_REMOVE(&FishSea.head, first, list);
CIRCLEQ_INSERT_TAIL(&FishSea.head, first, list);
}
/*Kombinieren Sie Flussfische mit Seefischen*/
static void splice_river_to_sea_fish(void)
{
fish_t *fish = NULL;
/*Kombiniert mit Fish River und verbunden mit Fish Sea*/
while (FishRiver.head.cqh_first != (void *)&FishRiver.head) {
fish = (fish_t *)FishRiver.head.cqh_last;
CIRCLEQ_REMOVE(&FishRiver.head, fish, list);
CIRCLEQ_INSERT_HEAD(&FishSea.head, fish, list);
}
FishSea.count += FishRiver.count;
FishRiver.count = 0;
}
/*Löschen Sie alle Einträge in der Seefischliste*/
static void del_sea_fish_all(void)
{
fish_t *fish = NULL;
while (FishSea.head.cqh_first != (void *)&FishSea.head) {
fish = FishSea.head.cqh_first;
CIRCLEQ_REMOVE(&FishSea.head, fish, list);
free(fish);
fish = NULL;
FishSea.count--;
}
}
int main(void)
{
/*Listeninitialisierung*/
init_fish_list();
/*Liste der Seefische*/
add_sea_fish_entry();
show_sea_fish_entry();
/*Liste der Flussfische*/
add_river_fish_entry();
show_river_fish_entry();
/*Beitrittsliste(river -> sea) */
splice_river_to_sea_fish();
show_sea_fish_entry();
/*Listenrotation*/
rotate_left_sea_fish();
show_sea_fish_entry();
/*Liste löschen*/
del_sea_fish_all();
show_sea_fish_entry();
return 0;
}
$ gcc queue.c -std=c99 -o fish_queue
$ ./fish_queue
----------- show sea fish entry (cnt:3) ------------
id:name = 1:sardine
id:name = 2:mackerel
id:name = 3:tuna
----------- show river fish entry (cnt:3) ------------
id:name = 4:salmon
id:name = 5:seabass
id:name = 6:eel
----------- show sea fish entry (cnt:6) ------------
id:name = 4:salmon
id:name = 5:seabass
id:name = 6:eel
id:name = 1:sardine
id:name = 2:mackerel
id:name = 3:tuna
----------- show sea fish entry (cnt:6) ------------
id:name = 5:seabass
id:name = 6:eel
id:name = 1:sardine
id:name = 2:mackerel
id:name = 3:tuna
id:name = 4:salmon
----------- show sea fish entry (cnt:0) ------------
[Kleine Geschichte] Ich möchte List oder Datenstruktur in C irgendwie einfach verwenden https://qiita.com/chromabox/items/ea9720422d7a974f6ced
Eine kleine Beispielnotiz von list_head https://qiita.com/kure/items/71057470322b1b636c57
Verwendung der vom Linux-Kernel bereitgestellten Liste http://d.hatena.ne.jp/mmitou/20120626/1340731801
Recommended Posts